Java8新特性
Java8 新增了非常多的特性,我们主要讨论以下几个:
- Lambda 表达式 − Lambda 允许把函数作为一个方法的参数(函数作为参数传递到方法中)。
- Stream API −新添加的Stream API(java.util.stream) 把真正的函数式编程风格引入到Java中。
Java 8 Stream API 函数式接口全解析:业务案例与代码实现
在Java 8中,Stream API 引入了一种新的处理集合数据的方式,使得我们可以以声明式的方式处理数据集合。以下是Stream API中一些关键函数式接口的详细业务案例。
1. Stream
的 filter
业务数据:一系列用户的年龄。
java
代码解读
复制代码
List<Integer> ages = Arrays.asList(22, 34, 29, 17, 30);
函数使用:
java
代码解读
复制代码
Predicate<Integer> isAdult = age -> age >= 18; long adultCount = ages.stream() .filter(isAdult) .count();
输出结果:
代码解读
复制代码
描述:计算成年人的数量 结果值:成年人数为 4
2. Stream
的 map
业务数据:一系列用户的姓名。
java
代码解读
复制代码
List<String> names = Arrays.asList("Alice", "Bob", "Charlie");
函数使用:
java
代码解读
复制代码
Function<String, String> toUpperCase = String::toUpperCase; List<String> upperCaseNames = names.stream() .map(toUpperCase) .collect(Collectors.toList());
输出结果:
css
代码解读
复制代码
描述:将所有姓名转换为大写 结果值:["ALICE", "BOB", "CHARLIE"]
3. Stream
的 flatMap
业务数据:一系列用户的姓名和地址。
java
代码解读
复制代码
List<User> users = Arrays.asList( new User("Alice", Arrays.asList("123 Apple St.", "456 Banana Ave.")), new User("Bob", Arrays.asList("789 Cherry Blvd.")) );
函数使用:
java
代码解读
复制代码
Function<User, Stream<String>> expandAddresses = user -> user.getAddresses().stream(); List<String> allAddresses = users.stream() .flatMap(expandAddresses) .collect(Collectors.toList());
输出结果:
css
代码解读
复制代码
描述:获取所有用户的地址 结果值:["123 Apple St.", "456 Banana Ave.", "789 Cherry Blvd."]
4. Stream
的 distinct
业务数据:一系列重复的字符串。
java
代码解读
复制代码
List<String> strings = Arrays.asList("apple", "banana", "apple", "orange", "banana");
函数使用:
java
代码解读
复制代码
Set<String> distinctStrings = strings.stream() .distinct() .collect(Collectors.toSet());
输出结果:
css
代码解读
复制代码
描述:获取不重复的字符串集合 结果值:["apple", "banana", "orange"]
5. Stream
的 sorted
业务数据:一系列字符串。
java
代码解读
复制代码
List<String> strings = Arrays.asList("banana", "apple", "cherry");
函数使用:
java
代码解读
复制代码
List<String> sortedStrings = strings.stream() .sorted() .collect(Collectors.toList());
输出结果:
css
代码解读
复制代码
描述:按字典顺序排序字符串 结果值:["apple", "banana", "cherry"]
6. Stream
的 limit
业务数据:一系列数字。
java
代码解读
复制代码
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
函数使用:
java
代码解读
复制代码
List<Integer> firstThreeNumbers = numbers.stream() .limit(3) .collect(Collectors.toList());
输出结果:
css
代码解读
复制代码
描述:获取前三个数字 结果值:[1, 2, 3]
7. Stream
的 skip
业务数据:一系列字符串。
java
代码解读
复制代码
List<String> fruits = Arrays.asList("apple", "banana", "cherry", "date", "elderberry");
函数使用:
java
代码解读
复制代码
List<String> fruitsAfterBanana = fruits.stream() .skip(2) .collect(Collectors.toList());
输出结果:
css
代码解读
复制代码
描述:跳过前两个字符串,获取剩余的字符串 结果值:["cherry", "date", "elderberry"]
8. Stream
的 forEach
业务数据:一系列员工的姓名。
java
代码解读
复制代码
List<String> employeeNames = Arrays.asList("Alice", "Bob", "Charlie");
函数使用:
java
代码解读
复制代码
Consumer<String> printName = name -> System.out.println("Employee: " + name); employeeNames.forEach(printName);
输出结果:
makefile
代码解读
复制代码
描述:打印每个员工的姓名 结果值: Employee: Alice Employee: Bob Employee: Charlie
9. Stream
的 reduce
业务数据:一系列数字。
java
代码解读
复制代码
List<Integer> numbers = Arrays.asList(1, 2, 3, 4);
函数使用:
java
代码解读
复制代码
Optional<Integer> sum = numbers.stream() .reduce(Integer::sum);
输出结果:
代码解读
复制代码
描述:计算数字总和 结果值:总和为 10
10. Stream
的 collect
业务数据:一系列字符串。
java
代码解读
复制代码
List<String> strings = Arrays.asList("apple", "banana", "cherry");
函数使用:
java
代码解读
复制代码
List<String> sortedStrings = strings.stream() .sorted() .collect(Collectors.toList());
输出结果:
css
代码解读
复制代码
描述:按字典顺序排序字符串并收集到列表 结果值:["apple", "banana", "cherry"]
11. Stream
的 min
和 max
业务数据:一系列数字。
java
代码解读
复制代码
List<Integer> numbers = Arrays.asList(1, 3, 2, 5, 4);
函数使用:
java
代码解读
复制代码
Optional<Integer> min = numbers.stream() .min(Integer::compare); Optional<Integer> max = numbers.stream() .max(Integer::compare);
输出结果:
代码解读
复制代码
描述:找出数字中的最小值和最大值 结果值:最小值为 1,最大值为 5
12. Stream
的 count
业务数据:一系列字符串。
java
代码解读
复制代码
List<String> strings = Arrays.asList("apple", "banana", "cherry");
函数使用:
java
代码解读
复制代码
long count = strings.stream() .count();
输出结果:
代码解读
复制代码
描述:计算字符串的数量 结果值:数量为 3
13. Stream
的 anyMatch
业务数据:一系列字符串。
java
代码解读
复制代码
List<String> strings = Arrays.asList("apple", "banana", "cherry");
函数使用:
java
代码解读
复制代码
boolean hasBanana = strings.stream() .anyMatch("banana"::equals);
输出结果:
arduino
代码解读
复制代码
描述:检查列表中是否包含"banana" 结果值:结果为 true
14. Stream
的 allMatch
业务数据:一系列字符串。
java
代码解读
复制代码
List<String> strings = Arrays.asList("apple", "banana", "cherry");
函数使用:
java
代码解读
复制代码
boolean allFruits = strings.stream() .allMatch(s -> s.startsWith("b"));
输出结果:
arduino
代码解读
复制代码
描述:检查所有字符串是否以"b"开头 结果值:结果为 false
15. Stream
的 noneMatch
业务数据:一系列字符串。
java
代码解读
复制代码
List<String> strings = Arrays.asList("apple", "banana", "cherry");
函数使用:
java
代码解读
复制代码
boolean noDates = strings.stream() .noneMatch("date"::equals);
输出结果:
arduino
代码解读
复制代码
描述:检查列表中是否没有"date" 结果值:结果为 true
16. Stream
的 findAny
业务数据:一系列数字。
java
代码解读
复制代码
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
函数使用:
ini
代码解读
复制代码
java Optional<Integer> anyNumber = numbers.stream() .findAny();
输出结果:
代码解读
复制代码
描述:找出任意一个数字 结果值:可能的结果为 1(或其他数字,取决于实现)
17. Stream
的 findFirst
业务数据:一系列字符串。
java
代码解读
复制代码
List<String> strings = Arrays.asList("apple", "banana", "cherry");
函数使用:
java
代码解读
复制代码
Optional<String> firstString = strings.stream() .findFirst();
输出结果:
arduino
代码解读
复制代码
描述:找出第一个字符串 结果值:可能的结果为 "apple"(或其他字符串,取决于实现)
18. Stream
的 peek
业务数据:一系列字符串。
java
代码解读
复制代码
List<String> strings = Arrays.asList("apple", "banana", "cherry");
函数使用:
scss
代码解读
复制代码
java strings.stream() .peek(System.out::println) // 打印每个字符串 .collect(Collectors.toList());
输出结果:
css
代码解读
复制代码
描述:打印每个字符串并收集到列表 结果值: apple banana cherry ["apple", "banana", "cherry"]
19. Stream
的 toArray
业务数据:一系列字符串。
java
代码解读
复制代码
List<String> strings = Arrays.asList("apple", "banana", "cherry");
函数使用:
java
代码解读
复制代码
String[] stringArray = strings.stream() .toArray(String[]::new);
输出结果:
css
代码解读
复制代码
描述:将字符串流转换为数组 结果值:字符串数组 ["apple", "banana", "cherry"]
20. Stream
的 boxed
业务数据:一系列整数。
java
代码解读
复制代码
IntStream intStream = IntStream.of(1, 2, 3, 4, 5);
函数使用:
java
代码解读
复制代码
Stream<Integer> integerStream = intStream.boxed();
输出结果:
arduino
代码解读
复制代码
复制 描述:将基本类型流转换为对象流 结果值:Stream of Integers [1, 2, 3, 4, 5]
20. Stream
完整案例
业务背景
需要处理以下需求:
- 计算总销售额。
- 找出最昂贵的订单。
- 筛选出金额超过1000的订单。
- 获取所有不重复的客户名称。
- 计算已交付订单的数量。
- 计算订单的平均金额。
- 使用并行流提高处理速度。
业务数据
java
代码解读
复制代码
List<Order> orders = new ArrayList<>(); for (int i = 0; i < 1000000; i++) { orders.add(new Order("Customer" + i % 100, i % 10000 + 1, Math.random() * 5000 + 500)); }
在这个模拟数据中,我们生成了100万个订单,每个订单有客户名称、订单ID和随机生成的金额(500到5500)。
函数使用
java
代码解读
复制代码
// 计算总销售额 double totalSales = orders.stream() .mapToDouble(Order::getAmount) .sum(); // 找出最昂贵的订单 Optional<Order> mostExpensiveOrder = orders.stream() .max(Order::compareByAmount); // 筛选出金额超过1000的订单 List<Order> ordersOverThreshold = orders.stream() .filter(order -> order.getAmount() > 1000) .collect(Collectors.toList()); // 获取所有不重复的客户名称 Set<String> uniqueCustomerNames = orders.stream() .map(Order::getCustomerName) .collect(Collectors.toSet()); // 计算已交付订单的数量 long orderCount = orders.stream() .filter(Order::isDelivered) .count(); // 计算订单的平均金额 double averageOrderAmount = orders.stream() .mapToDouble(Order::getAmount) .average() .orElse(0.0); // 使用并行流提高处理速度 double parallelTotalSales = orders.parallelStream() .mapToDouble(Order::getAmount) .sum();
输出结果
- 总销售额:
totalSales
表示所有订单的总金额。 - 最昂贵的订单:
mostExpensiveOrder
包含金额最高的订单信息。 - 金额超过1000的订单列表:
ordersOverThreshold
包含所有金额超过1000的订单。 - 不重复的客户名称集合:
uniqueCustomerNames
包含所有不同的客户名称。 - 已交付订单的数量:
orderCount
表示已交付的订单数。 - 订单的平均金额:
averageOrderAmount
表示所有订单金额的平均值。 - 并行流处理的总销售额:
parallelTotalSales
使用并行流计算的总销售额,可以提高处理速度。