遇到一个错误: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is Fal

本文解决在CUDA设备上尝试反序列化对象时遇到的RuntimeError,提供了解决方案,即使用torch.load函数时添加map_location参数为'cpu',以适应在CPU-only机器上的操作。
摘要由CSDN通过智能技术生成

遇到一个错误:

RuntimeError: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is False. If you are running on a CPU-only machine, please use torch.load with map_location='cpu' to map your storages to the CPU.
出错语句:

torch.load(model_file)
改为:

model = torch.load(model_path, map_location='cpu')
 

多个GPU训练的,

参考:

<https://blog.csdn.net/iamjingong/article/details/85308600>

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值