登顶KITTI!Mix-Teaching:适用于单目3D目标检测的半监督方法【清华大学】

点击下方卡片,关注“自动驾驶之心”公众号

ADAS巨卷干货,即可获取

论文标题:Mix-Teaching: A Simple, Unified and Effective Semi-Supervised Learning Framework for Monocular 3D Object Detection

论文链接:https://arxiv.org/pdf/2207.04448.pdf

论文代码:https://github.com/yanglei18/Mix-Teaching

后台回复【MixTea】获取论文和代码!

后台回复【ECCV2022】获取ECCV2022所有自动驾驶方向论文!

1摘要

单目3D目标检测是自动驾驶必不可少的感知任务。然而,对大规模有标签数据的高度依赖使得模型优化过程成本高昂且耗时。为了减少对人工标注的过度依赖,我们提出了Mix-Teaching,这是一种有效的半监督学习框架,可以在训练阶段同时使用标注和无标注的图像。Mix-Teaching首先通过自我学习训练为无标签图像生成伪标签。然后通过将实例级图像块粘贴到空白背景或有标签图像中,在具有更密集和更精确标签的混合图像上训练学生模型。这是第一个打破图像级别限制,将来自多帧的高质量伪标签放入一张图像中进行半监督训练的方法。此外,由于分类置信度和定位质量之间的不一致,仅使用基于置信度的标准很难从大量带噪声的预测结果中得到高质量的伪标签。为此,我们进一步引入了一个基于不确定性的过滤器,以帮助为上述混合操作选择可靠的伪框。据我们所知,这是第一个用于单目3D目标检测的统一半监督学习框架。Mix-Teaching在KITTI 数据集上的各种标签比率下,都能提高MonoFlex 和 GUPNet的性能。例如,当仅使用10%的有标签数据时,我们的方法在验证集上相对于GUPNet基线实现了大约+6.34%AP@0.7的提升。此外,利用完整有标签训练集和KITTI额外的48K原始图像,它可以进一步提高MonoFlex在AP@0.7上的汽车检测提升+4.65%,达到18.54%AP@0.7,在KITTI测试排行榜上所有基于单目的方法中排名第一。

3c4be91ee97e2e36f4e1cfb44a36cb91.png

2简述

单目3D目标检测是使用单张图像来预测周边目标的类别和3D目标框的任务。单目3D目标检测在自动驾驶及机器人技术中有独特的优势和潜力,成为学术和工业界的研究热点。很多新的目标检测方法取得了较大的精度提高,但却高度依赖有标签数据,人工和时间成本都很高。

现在常用的利用无标签数据的方法分为两种:伪标签和一致性规则。伪标签是通过自学习训练或Mean Teacher方法给无标签数据打上伪标签,然后在做过数据增强(保留原始伪标签)的相同图像上训练学生模型,让学生模型从伪标签数据中学习到信息。一致性规则则是增加一致性loss来约束模型在不同扰动下能够稳定预测,从而提高模型的泛化能力。

单目3D目标检测在KITTI上只有15%AP@0.7左右,而2D及基于激光雷达的3D目标检测指标已经达到或超过了85%~96%AP@0.7。这也就意味着用伪标签方法得到的伪标签本身就不可靠,用了反而会造成负面影响,漏检和误检都会很多。

为了优化这个低召回伪标签的问题,我们提出了Mix-Teaching,一种适用于大部分单目3D目标检测的通用半监督学习框架。

3贡献

Mix-Teaching中,首先通过自我学习训练来预测无标签数据的伪标签。然后将无标签样本分成具有高质量伪标签的图像块集合和不包含目标的背景图像集合。然后,学生模型在混合图像上进行训练,这些混合图像是通过将上述实例图像块粘贴到背景图像或粘贴到到通过强数据增强的有标注图像中而得到的。这样生成的合成图像就都是高质量的伪标签了,避免了一些漏标注的问题。最后,经过多阶段的训练,逐步将信息从有标签数据传递给无标签数据。

由于单目3D目标检测模型精度差,误标注问题严重,针对此问题,作者不再只通过置信度来过滤较差的伪标签,而是提出了一种基于不确定性的过滤器,该方法使用结构相同但参数不同的模型来估计每个目标的不确定性,如果同一目标的预测集的不确定性越高,该集中的预测数越少,它们间的定位误差也就越大。作者利用置信度和不确定性过滤器来过滤那些低质量的噪声伪标签,证实是有效的,而且由于去除这些噪声伪标签只在每个训练阶段的开始,所以效率也不会太低。

本文总结下来主要有三点贡献:

  1. 阐述了半监督学习方法在单目3D目标检测应用中的主要困难,并且为什么现有的SSL算法无法处理它们,基于此我们提出了Mix-Teaching。

  2. 为了减少模型过拟合噪声伪标签问题,提出了一种基于不确定性的过滤器,可以有效去除噪声伪标签。

  3. KITTI上实验证明了Mix-Teaching框架的有效性,作为SSL用于单目3D目标检测的首次研究,可作为进一步研究的基线框架。

4方法

首先我们的目标是利用无标签和有标签的数据训练得到的模型,性能要优于只用有标签数据训练的模型。训练策略是使用多阶段策略,先用全部有标签数据训练一个教师模型,然后再对无标签数据打伪标签,接着用有标签和伪标签数据训练一个带噪学生模型,这个学生模型将是下一个阶段的教师模型。

Mix-Teaching 框架

Mix-Teaching框架如下图所示。这是一种可以轻松应用于大多数单目 3D 目标检测器的通用方法。我们的混合教学主要由两个阶段组成:面向数据库的伪标签和混合数据的噪声学生模型。

c1046547443cb66981b49c0800ec3dac.png
  1. 面向数据库的伪标签。将所有的伪标签和纯背景图像收集起来。教师模型前向生成伪标签,再通过基于置信度和基于不确定性的过滤器进行过滤,创建一个由实例级图像块及其相应的高质量伪标签组成的实例图像块数据库。我们从数据中选择所有不包含任何预测结果的纯背景图像并创建背景数据库。

  2. 混合数据的噪声学生模型。基于上述两个数据库和有标签图像,创建了包含更密集和具有更精确标签的混合图像,用于半监督训练。对此有两种通用策略:一种方法是将实例图像块数据库中的图像块粘贴到有标签图像上。另一种方法是在来自背景数据库的图像上粘贴实例图像块。在此过程中,实例图像块是基于原图像上的2D框坐标粘贴到目标图像的。避免过度重叠及其它可能的不合理粘贴,作者做了一个边界框碰撞测试,来去除这些无效的粘贴。

为了缓解过拟合噪声伪标签问题,作者使用了一些强数据增强:

  1. 边界裁切,在粘贴前,以一定比例(0-0.3)对图像块进行水平或垂直的边界裁切;

  2. 颜色填充,在粘贴前,以一定比例(0-0.3)对图像块进行水平或垂直的边界颜色填充;

  3. Mixup,以一个随机比率(0.6-1.0)对前景图像块和背景图像进行加权平均。

数据增强方法可视化如下图所示:

000e66a2702dacfb48361287911d92b2.png

整体的损失函数可以用监督loss和无监督loss表示,并以一个超参数来平衡两者。loss主要包括分类和回归loss,无监督混合图像中再加上纯背景图的loss。

f8a5fffed610444065ca6ae9098748f8.png 4dbc697d1d23ffb653b77b55b4c7ef91.png 08b6bf69cf5ef846af96fec7759a692d.png

基于不确定性的过滤器

539000775e8a005cd6bb05820634b7ab.png

作者发现,如上图所示,分类置信度和候选框定位精度存在巨大的偏差,相当一部分预测结果的分类置信度很高,但与真值的IoU-3D的值很低。这样只用置信度去选择伪标签就会造成引入一些噪声伪标签,给半监督训练带来很大的噪声伪标签过拟合风险。

为了缓解上述问题,我们进一步提出了一种基于不确定性的过滤器,在该过滤器中,我们根据N个模型(同结构不同参数)对同一个目标的预测差异来推断定位不确定性。对于图像上的特定目标,将有M个预测结果。我们主要从两个角度定义定位不确定性:(1)与该目标关联的预测数M;(2) 这些预测框之间的差异。预测数M反映了N个模型中漏检的水平。候选框的差异揭示了模型预测的随机性。

计算不确定性的步骤:

  1. N个模型的所有预测结果都存储在列表B中。

  2. 声明三个列表G,H和U,G用于存储框的集合。每个集合代表来自N个模型的特定目标的预测。H中是每个集合中置信度得分最高的框。U保存H中每个框的定位不确定性。

  3. 遍历列表B中的所有框,找到属于当前集合C的匹配框。匹配条件定义为在条件 IoU-3D大于thr下与集合C 的初始框bm有较大重叠的框。所有匹配的框将从列表B移至集合C。然后更新当前集合C到列表G。

  4. 如果在列表B中仍然有未处理的框,选择在列表B中有最大分数的框bm,移动到列表H。用框bm初始化一个新的C集合,返回执行步骤3。

  5. 当B中的所有框都被处理后,用下面的公式计算列表G中框集合C的不确定性。结果被添加到列表U。

3a235af63735485d1e2ea31d9a543606.png

不确定性值域为0到1。当值为0时,表示在N个模型(M=N)中不存在漏检,并且所有N个候选框完全一致。当值为1时,表示所有模型都未能检测到该目标。如下图所示,我们可视化了IoU-3D与定位不确定性之间的关系。与分类得分相比,这个不确定性指标可以更好地衡量定位精度。与需要针对特定目标检测器进行相关分支设计的3D置信度或IoU-3D相比,我们的基于不确定性的过滤器是模型无关的,并且可以应用于多种类型的基于图像的3D目标检测器,这才是更通用的半监督学习框架。

abe289cdace82610695477a3b5db6861.png

5实验结果

KITTI上与MonoFlex、GUPNet的对比:

827e3705b3d432deac2ff806e06a30c6.png

与KITTI上的其它SOTA方法对比:

be1587e75f42726d11fd5fdcd282fd1e.png

小目标上的表现:

91df3c258b34a2170b6bdfa3bd3bb36c.png

一些消融实验:

背景数据集、目标框级别的数据增强、基于不确定性的过滤器都有助于模型效果的提升。对不同置信度阈值和不确定性阈值也做了实验对比。

de1f76d79fca74d547699ccc64794abc.png 7189fef2898a8828dc911ed4abefb6df.png 504d00a72c8da3f764e3dc7f1e985f6a.png d9f671e1fb4a060076e3ae4c4418aa93.png

可视化结果展示

8e99bf2969121100d7a53aa2cd541f96.png

自动驾驶之心】全栈技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D感知、多传感器融合、SLAM、高精地图、规划控制、AI模型部署落地等方向;

加入我们:自动驾驶之心技术交流群汇总!

自动驾驶之心【知识星球】

想要了解更多自动驾驶感知(分类、检测、分割、关键点、车道线、3D感知、多传感器融合、目标跟踪)、自动驾驶定位建图(SLAM、高精地图)、自动驾驶规划控制、领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球(三天内无条件退款),日常分享论文+代码,这里汇聚行业和学术界大佬,前沿技术方向尽在掌握中,期待交流!

05a7d6eab25538c4133804833948c17d.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值