四位数成员了!这个自动驾驶学习社区真的有料

继2022届高校毕业生首次突破1000万大关后,2023届毕业生人数再创新高!2022年,包括互联网在内的其它行业几乎都经历了寒冬,然而自动驾驶行业却仍然保持活力,一大批小伙伴开始转入!不得不说,今年一定是自动驾驶的元年。

历时半年,我们搭建了一个国内最专业的自动驾驶感知、定位融合、仿真部署的平台,完成了近20+的技术方向学习路线的搭建!目前我们接触的从业者大多是机械、电气、自动化专业的同学,今年来看还有相当一部分从事互联网行业的同学跨行过来,相比于计算机科班来说,缺乏系统的学科知识,入门难,进阶更难!一般来说,任何一门学科,入门进阶首先要对领域整体技术框架有所了解,正所谓不谋全局者不足以谋一域!有了这个基础,剩下的就是深耕某一领域的内容,和同行者、老师一起答疑解惑!如果你想转到自动驾驶、想了解最新的技术方向、招聘信息和求职攻略,汽车人诚心推荐大家加入自动驾驶之心知识星球!这是一个能够all in one的地方(由于内容足够全,需要一点阅读时间,这里涵盖所有你想要的)

c3dc880f2303e18cc4415cc6d5854e1d.png

自动驾驶之心知识星球

自动驾驶之心知识星球是首个以自动驾驶技术栈为主线的交流学习社区,这是一个前沿技术发布和学习的地方!我们汇总了自动驾驶感知(分类、目标检测、语义分割、实例分割、全景分割、关键点检测、车道线检测、3D感知、目标跟踪、多模态、多传感器融合等)、自动驾驶定位建图(高精地图、SLAM)、自动驾驶规划控制、领域技术方案、AI模型部署落地等几乎所有子方向的学习路线!除此之外,还和数十家自动驾驶公司建立了内推渠道,简历直达!这里可以自由提问交流,许多算法工程师和硕博日常活跃,解决问题!初衷是希望能够汇集行业大佬的智慧,在学习和就业上帮到大家!星球的每周活跃度都在前50内,非常注重大家积极性的调度和讨论,欢迎加入一起成长!

e0d78506f6a3201c8ff540d690f99d86.png

星球目前有哪些成员?

星球成员主要来自商汤科技、旷视科技、百度、阿里、网易、Momenta、Intel、Nvidia、赢彻科技、图森未来、智加科技、AutoX、大疆、上汽、集度、地平线、蔚来、小鹏、蘑菇车联、斑马、华为等业界知名公司,以及苏黎世理工、卡耐基梅隆大学、普渡大学、东京大学、香港中文大学、香港科技大学、香港大学、清华大学、上海交大、复旦大学、浙江大学、中科大、南京大学、东南大学、同济大学、上海科技大学、哈工大等国内外知名高校;

知识星球有哪些模块?

CV图文教程:网络结构可视化、算法原理图解;

视频教程:星球内部技术分享视频完成了多次技术直播分享,包括毫米波雷达视觉融合、高精地图制作关键技术、自动驾驶行业与求职分析、自动驾驶仿真等多个方向(星球内部观看)!以及优秀开源课程,涉及相机标定、伯克利深度学习与计算机视觉、百度优达学城、Apollo自动驾驶、Udacity自动驾驶、MIT自动驾驶、Carla自动驾驶仿真等系列视频课程;

日常paper分享:BEV感知、3D目标检测、多模态融合、2D检测、分割、车道线、多任务学习、多目标跟踪、传感器空间和时间同步、鱼眼感知与模型、轨迹预测、高精地图、SLAM、规划控制、V2X、Occupany network、NerF、测速测距、强化学习、VIT、轻量化等;

职位与面经分享:自动驾驶行业职位内推、面经分享、入门学习路线分享;

日常问答交流:和嘉宾星主交流领域学术工业最新进展,包括领域方案、工程实战问题、学术界前沿动态;

21dd9ff9b996286e658055a3d0456b8c.png

主要面向对象

星球创建的初衷是为了给自动驾驶行业提供一个技术交流平台,包括需要入门的在校本科/硕士/博士生,以及想要转行或者进阶的算法工程人员;除此之外,我们还和许多公司建立了校招/社招内推,包括地平线、百度、蔚来汽车、momenta、赢彻科技、集度、滴滴、Nvidia、高通、纵目科技、魔视智能、斑马汽车、博世、纽劢科技、追势科技、寒武纪等!

如果您是自动驾驶和AI公司的创始人、高管、产品经理、运营人员或者数据/高精地图相关公司,也非常欢迎加入,资源的对接与引进也是我们一直在推动的!我们坚信自动驾驶能够改变人类未来出行,想要加入该行业推动社会进步的小伙伴们,星球内部准备了基础到进阶模块,算法讲解+代码实现,轻松搞定学习!

3db849685dd8ec0337d48bced3445b07.png

f25d9b34c8bba63d8092e6a5290588d2.png

日常讨论

bb3c0a91ee6ab4ac9b23b8407d385992.png

f40a2f42ba76813f1f8c64af1b3deca7.png

日常分享

星球主要关注方向

0.自动驾驶顶会与公司

星球内部为大家汇总了CVPR、ECCV、IROS、RSS、TPAMI、IV、ICIP等自动驾驶领域顶会和顶刊,以及图森、智加、主线科技、集度、滴滴、纵目、元戎启行、momenta、蔚来小鹏理想等近80家公司介绍(可以内推!)

1.计算机视觉相关数据集

数据集是AI任务的基石,然而大多数数据集都是国外机构开源,数据量较大,下载速度缓慢,这两个缺点导致很多研究人员在数据获取上为难,为此星球内部已经为大家准备了近30种计算机视觉和自动驾驶相关数据集,包括KITTI、Waymo Open Dataset、Lyft L5、COCO、Semantic3D、A2D2数据集、车道线数据集、车牌数据集、行人检测数据集、红绿灯检测数据集等,一键下载;

db210d1b5a2945fe71bd2fe673870dc1.png

2.2D/3D标定工具与仿真

星球内部为大家汇总了2D检测、3D点云检测、语义分割、实例分割、3D点云分割、视频检测、交互标定、多传感器标定等工具,还有各类仿真框架,可以快速适配到自己项目中。

500d6635a2adfc486cf1b6a2ff9fc4b9.png

3.基础学习资料

整理了从自动驾驶感知、跟踪、滤波专业算法技术,到深度学习数学基础和图像处理、经典计算机视觉算法、Opencv、Pytorch以及C++、Python、GPU和Cuda近50本pdf学习资料!

9a80130276f0488883dc970cf105a411.png

d92d82a91b329f49f0d8ca07b14eb05f.png

b495902010515cd3390d6791a5ad4c07.png

4.  Backbone与Transformer

主要关注常用的轻量化、高性能backbone,以及视觉transformer结构与优化;

0f433578168cdc99da2f7edfb8bbc5a2.png

5.  2D目标检测

关注anchor-based、anchor-free、one-stage、two-stage、超全YOLO系列、小目标检测、多任务模型、长尾分布、误检消除、难例挖掘、定位精度优化等内容;该模块汇总检测领域的经典综述和论文,从结构、数据增强策略、采样策略、不均衡问题、半监督、知识蒸馏上展开研究;

9225b7e7c22c4006a84b382e6668ed2d.png e37f133d27f175e30535b46ba2a2c5b3.png 194b538ceffa129c13da28f33ea37f24.png aaec03f1265a47ab16a2bf54f129a339.png

6.  分割任务

汇总了常见的2D语义分割、实例分割、全景分割以及3D点云分割SOTA算法,并对分割任务中的边缘轮廓分割模糊不细腻问题展开讨论;

d617dbb807bc23c872472924a8369ee6.png 3c999a2ce6eddf9a11344c63daedd8fb.png

7.车道线检测

对基于检测、分割、分类、关键点、曲线预测、多传感器检测、3D车道线SOTA方法进行了汇总,对车道线遮挡、磨损、不连续问题展开了讨论!

1fc5ada449fcb288e6b6b524f6f72ab5.png

8.鱼眼感知

针对鱼眼和全景相机在自动泊车、近域感知上的应用展开,主要包括相机标定、鱼眼全景相机系统、自动泊车系统、环视数据集、鱼眼深度估计、鱼眼目标检测、鱼眼SLAM、语义分割等方向!

c67d15e12cf1eb4019ea9484732a864d.png 4dd1981a48649fe72d6ce5734fb2b7ce.png a9ad05fecee0f47d3bae46c37821dd2c.png

9.目标跟踪

针对单目标和多目标跟踪,基于Siamese Network、Tracking-by-detection、传统滤波+关联算法、end2end等方法进行全面展开阐述,后续更会加入变速情况下的跟踪系统;

ec4971ac5584147c8d4d090da6cf5fa5.png b81a48ad06096fdb61e95a4f33681728.png

10.3D目标检测

从点云和多模态数据3D检测任务展开,基于BEV、点、体素、多camera数据的3D检测方案;

ec750ce025e8ee86d33b20c066a98d2e.png 2ddbe1dc27d0d774921844837b229560.png 695a41e6af8a47ef570941b3f5f46c16.png 5ebe05520768fba17d4be98b9d2cd44e.png 60770539b0bc35315139b5873be34d80.png

11.传感器标定

主要关注自动驾驶领域常见的Camera、Lidar、Radar、IMU之间的离线、在线标定,多相机、多激光雷达之间的标定,自动标定,传感器时间同步等;

98b906b2cafd592fbb399bfeee146df7.png

34d0377441dddd7dfa4ea3706470219e.png

0bd2b2723345ccfeb840da6ab35de2ce.png

e097827b2b9f47548574600ba760cf4f.png

d231c2d6b2bef5293a9f453f3a860525.png

12.多传感器融合

星球内部汇总了数据级融合、目标级融合、特征级融合、弱融合、不对称融合等多种方案!

98e519416cda7999b3e76f4c8b4e02e8.png

3d01a47e97062785ee4532cfd5cee9f0.png

b37bb7e6b27db9da1eb68c66061bae9a.png

e6a2013cd9e060374bad15270298f671.png

13.SLAM与高精地图

汇总了单目SLAM、RGB-D SLAM、激光SLAM、毫米波SLAM、高精地图定位方法、自定位方法!以及领域内最常用的高精地图制作方法!

8c12432c0c56b7f1d50548a47bd4d557.png

c746e758665ab1b248995a60247762e4.png

3d68fd4f7fee73667787cf488659f1c8.png

af7e183ca235550a5ce8667a135a5bc5.png

35adb6618849455ac69e5f74dffe4d0f.png

de0784f91d9ceeca824aeb893cd11ade.png

14.模型压缩与轻量化

汇总了模型压缩、裁剪、量化、权值共享、模型加速、知识蒸馏、量化工具等数十篇干货介绍!

15.模型部署

TensorRT、NCNN、Opencv、MNN方案部署检测、分割、关键点、分类模型实战;

8c7c68f380c61f76c80b48a0acc113d4.png

16.轨迹预测

重点关注行人、车辆、基于机器学习、深度学习、强化学习方式的预测!

46232398e534f389e9c107fc418ad333.png

17.规划控制

涵盖所有的规划控制方法,重点关注行车、泊车、机器人等应用领域!

9f2e2744732b498a4275512783c22f25.png

b8a9b0a0000fa9e05a55d183eeba4c51.png

18.其它

在感知定位融合之外,还汇总了Occupany network、测速测距、大量机器人、自动驾驶规划方法,强化学习在运动规划上的应用、V2X技术,以及图像加速CUDA方法等~

6bc9265a942a27dd9f7bd3eb57704205.png

日常讨论交流

631ecf70d7d12034d72bc5562f44d9e3.png 3cda56de4a2647c1f6cb0bf47e146e21.png e0b22129d6e446ece1e1b47b539c48df.png 8e918fc80f75954129e2d4dc8f57d9fd.png fa79703c2b073ba72f1a41a0aa80a723.png

欢迎加入

欢迎大家扫码加入自动驾驶之心知识星球,我们诚邀前期成员的加入,一起创造一个全技术栈的自动驾驶开发者社区!星球成员的加入平均每天0.5元,欢迎扫码加入一起学习一起卷!

afaa8bc355c980764171248f409f2384.png

任何疑问欢迎联系汽车人助理,备注方向+昵称:

71df0c8e7efe08247615e8ef75811c0b.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值