作者 | 应知 编辑 | 汽车人
原文链接:https://zhuanlan.zhihu.com/p/628074965?
点击下方卡片,关注“自动驾驶之心”公众号
ADAS巨卷干货,即可获取
点击进入→自动驾驶之心【SLAM】技术交流群
后台回复【SLAM综述】获取视觉SLAM、激光SLAM、RGBD-SLAM等多篇综述!
研究生进行无人机控制导航时,使用GNSS/Mag/IMU等传感器进行组合导航定位,用于计算无人机的姿态。
本文主要介绍ESKF算法在多传感器融合中的应用,详细记录和推导ESKF状态传播方程,并更详细解释观测方程及其物理意义,直观的解释SLAM-IMU状态预测方程的关系,用于算法学习研究。
EKF算法过程简单理解:
通过IMU传感器进行状态更新,并计算其状态协方差;
SLAM/GNSS等作为EKF观测值,计算观测协方差;
增益(可以理解为加权平均的权重)由状态协方差和观测协方差之间的比值计算;
通过协方差进行状态更新,

ESKF主要用于多传感器融合,可用于降低AR眼镜算法功耗、提升大场景SLAM的效果等。
1. 状态预测方程
定义,考虑噪音,状态变量随时间变化如下

2. 误差状态传播方程
参考文章已经很详细,现补充部分细节公式推理,并按顺序重新整理:
旋转矩阵:

结合式(3):

位置:

速度:

由式(2)可得

忽略高阶小量

因此可以得到

3. 观测方程和残差方程(链接slam和imu)

视频课程来了!
自动驾驶之心为大家汇集了毫米波雷达视觉融合、高精地图、BEV感知、传感器标定、传感器部署、自动驾驶协同感知、语义分割、自动驾驶仿真、L4感知、决策规划、轨迹预测等多个方向学习视频,欢迎大家自取(扫码进入学习)
(扫码学习最新视频)
国内首个自动驾驶学习社区
近1000人的交流社区,和20+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(分类、检测、分割、关键点、车道线、3D目标检测、Occpuancy、多传感器融合、目标跟踪、光流估计、轨迹预测)、自动驾驶定位建图(SLAM、高精地图)、自动驾驶规划控制、领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!
【自动驾驶之心】全栈技术交流群
自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多传感器融合、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向;
添加汽车人助理微信邀请入群
备注:学校/公司+方向+昵称