作者 | 守夜人 编辑 | 汽车人
原文链接:https://zhuanlan.zhihu.com/p/648566805
点击下方卡片,关注“自动驾驶之心”公众号
ADAS巨卷干货,即可获取
点击进入→自动驾驶之心【模型部署】技术交流群
本文只做学术分享,如有侵权,联系删文
给实验室同学们做了一次TVM分享,介绍了深度学习编译技术的背景、主要组件、主要过程等。资料来源TVM相关论文和slides,每一页给出来源,感兴趣的可以深挖下。
背景






上图来源:M. Li et al., “The Deep Learning Compiler: A Comprehensive Survey,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 3, pp. 708–727, Mar. 2021, doi: 10.1109/TPDS.2020.3030548.




TVM架构



J. Roesch et al., “Relay: A High-Level Compiler for Deep Learning.” arXiv, Aug. 24, 2019. Accessed: Jun. 27, 2022. [Online]. Available: http://arxiv.org/abs/1904.08368




TVM扩展:支持新的硬件

Z. Chen et al., “Bring Your Own Codegen to Deep Learning Compiler.” arXiv, May 03, 2021. Accessed: Jun. 27, 2022. [Online]. Available: Bring Your Own Codegen to Deep Learning Compiler



TVM对神经网络量化的支持



JAIN A, BHATTACHARYA S, MASUDA M, et al. Efficient Execution of Quantized Deep Learning Models: A Compiler Approach[J]. arXiv, 2020.
TVM应用案例


相关资源:
https://mlc.ai/mlc-llm/
https://github.com/mlc-ai/mlc-llm
https://mlc.ai/mlc-llm/docs/index.html

相关资源:
希姆计算

相关资源:
MindSpore/akg
https://gitee.com/mindspore/akg

① 全网独家视频课程
BEV感知、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、点云3D目标检测、目标跟踪、Occupancy、cuda与TensorRT模型部署、协同感知、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码学习)

② 国内首个自动驾驶学习社区
近2000人的交流社区,涉及30+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(2D检测、分割、2D/3D车道线、BEV感知、3D目标检测、Occupancy、多传感器融合、多传感器标定、目标跟踪、光流估计)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

③【自动驾驶之心】技术交流群
自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、点云处理、端到端自动驾驶、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)
④【自动驾驶之心】平台矩阵,欢迎联系我们!