Apollo Plannig综述

作者 | 徐明  编辑 | 汽车人

原文链接:https://zhuanlan.zhihu.com/p/668739006

点击下方卡片,关注“自动驾驶之心”公众号

ADAS巨卷干货,即可获取

点击进入→自动驾驶之心【规划控制】技术交流群

本文只做学术分享,如有侵权,联系删文

1. 系统框架

图 1.1 展示了 Planning 在整个自动驾驶系统中的上下游和数据流关系[1].

30768883d8b75506ac313fbbb1841973.png
图 1.1 自动驾驶数据流

规划(Planning)接受上游包括定位(Localization)、高精地图(HD Map)、感知(Perception)和预测(Prediction)的信息, 生成轨迹之后交由控制(Control)去执行.

2. 规划的作用

Planning 模块在无人驾驶系统中负责决策和轨迹规划, 主要解决在已知当前位置、周围环境以及目标位置的情况下如何安全、高效、舒适地达到目标位置的问题[1].

f53c536df02e3021b18857426fb67095.png
图 2.1 规划决策的层级

图 2.1 描述了 Planning 到 Control 的执行流程[2][3]. 即:

  1. 路由寻径(Routing Planning): 负责在宏观路网中形成衔接起点和终点的概略行车路线. 根据当前位置、目标位置、高精地图生成全局 Routing 信息.

  2. 行为决策(Behavioral Layer): 根据周围环境决定当前所处场景, 并针对当前场景做出合理的决策. 其中, 横向决策包括直行, 微微绕行, 借道绕行. 纵向决策包括减速让行, 加速抢行, 停车和跟车.

  3. 轨迹规划(Motion Planning): 在微观层面生成符合行为决策结果的时空连续轨迹. 即根据决策信息、自车状态信息、环境信息、地图信息、Routing 结果, 生成未来 8s 的轨迹信息. 最后 Planning 将生成的轨迹交由 Control 模块跟踪执行 .

3. 路由巡径

Routing 中最重要的是了解地图的拓扑结构, 如何将 A* 算法用于搜索, 以及 Cost 设计. 这里不进行展开. 详细见Routing.

4. 行为决策

行为决策的目的:

  • 保障无人车的行车安全并遵守交通规则

  • 为路径和速度的平滑优化提供限制信息

4.1. 输入输出

输入:

  • Routing信息

  • 道路结构信息: 当前车道, 相邻车道, 汇入车道, 路口

  • 交通信号和标识: 红绿灯, 人行横道, 停车标志

  • 障碍物信息: 障碍物类型, 位置, 大小, 速度, 预测轨迹 输出:

  • 路径信息: 路径长度, 左右限制边界

  • 速度限制和边界

  • 时间上的位置限制边界

4.2. 行为决策模型

行为决策模型分为四类, 其优缺点如下表所示:

eba36268e9b44351dde66117716800b3.png

4.3. 决策类型

0694ad34a5d283930e871c73db0929c5.png

5. 轨迹规划

5.1. 横纵解偶

Planning 模块将轨迹规划分解成路径规划和速度规划两个部分[4].

  • 路径规划: 生成车辆的可行驶曲线. 然后使用成本函数, 对每条曲线进行评估. 选择最低成本的路径.

  • 速度规划: 在选择的路径上, 考虑与障碍物的时空交集, 作出超车, 让行, 跟车, 停车等速度决策. 并使用优化算法, 对决策后的速度进行平滑, 最终得到一条最优的速度曲线. 通过将路径和速度曲线结合, 可以构建车辆的行驶轨迹.

064a83de8149ba1b0a860a1ada685978.png
图 5.1 路径 - 速度规划解耦

5.2. 路径规划

路径规划的步骤:

  1. 对输入的中心线采集点进行平滑, 得到一条方向和曲率都连续的参考线.

  2. 将道路分割成单元格, 对单元格中的点进行随机采样, 通过将单元格中的点进行连接, 得到一组候选路径.

  3. 计算候选路径的成本, 考虑偏离参考线, 碰撞, 速度限制, 舒适度等要求.

  4. 从这些路径中, 选择成本最低的路径.

2f51d496530e4ae8872f8d060fb7b9bb.png
图 5.2 路径规划

5.3. 速度规划

速度规划需要使用 ST 图, 横坐标是时间, 纵坐标是行驶距离. 当斜率越大时, 行驶速率越快. 为了构建最佳的速度曲线. 需要把 ST 图网格化. 在每个单元格中, 假设速度不变. 这样得到一个近似的简化的速度曲线.

利用预测规划和 Path 的碰撞检测, 道路上的障碍物可以绘制成在特定时间段内, 阻挡道路的某些部分的矩形(准确的说应该时平行四边形?) 如1图所示.

  1. 绘制障碍物ST图

  2. 规划无碰撞的速度曲线

  3. 选择最佳速度曲线

  4. 速度曲线的平滑

4e34ae2c3ad611ed0cfe58bb2ca1a9e4.png
图 5.3 速度规划

① 全网独家视频课程

BEV感知、毫米波雷达视觉融合多传感器标定多传感器融合多模态3D目标检测点云3D目标检测目标跟踪Occupancy、cuda与TensorRT模型部署协同感知语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习

c5751dbbee56a36c988b8b5eedafbb7c.png 视频官网:www.zdjszx.com

② 国内首个自动驾驶学习社区

近2000人的交流社区,涉及30+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(2D检测、分割、2D/3D车道线、BEV感知、3D目标检测、Occupancy、多传感器融合、多传感器标定、目标跟踪、光流估计)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

7f9c2adf5c6048797e05e47410ffccce.png

③【自动驾驶之心】技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、点云处理、端到端自动驾驶、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)

dba8ac65f44b91a178946b6ab431f4da.jpeg

④【自动驾驶之心】平台矩阵,欢迎联系我们!

f9d1a4afb307dcec12dbc74f02588024.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值