作者 | 徐明 编辑 | 汽车人
原文链接:https://zhuanlan.zhihu.com/p/668739006
点击下方卡片,关注“自动驾驶之心”公众号
ADAS巨卷干货,即可获取
点击进入→自动驾驶之心【规划控制】技术交流群
本文只做学术分享,如有侵权,联系删文
1. 系统框架
图 1.1 展示了 Planning 在整个自动驾驶系统中的上下游和数据流关系[1].

规划(Planning)接受上游包括定位(Localization)、高精地图(HD Map)、感知(Perception)和预测(Prediction)的信息, 生成轨迹之后交由控制(Control)去执行.
2. 规划的作用
Planning 模块在无人驾驶系统中负责决策和轨迹规划, 主要解决在已知当前位置、周围环境以及目标位置的情况下如何安全、高效、舒适地达到目标位置的问题[1].

图 2.1 描述了 Planning 到 Control 的执行流程[2][3]. 即:
路由寻径(Routing Planning): 负责在宏观路网中形成衔接起点和终点的概略行车路线. 根据当前位置、目标位置、高精地图生成全局 Routing 信息.
行为决策(Behavioral Layer): 根据周围环境决定当前所处场景, 并针对当前场景做出合理的决策. 其中, 横向决策包括直行, 微微绕行, 借道绕行. 纵向决策包括减速让行, 加速抢行, 停车和跟车.
轨迹规划(Motion Planning): 在微观层面生成符合行为决策结果的时空连续轨迹. 即根据决策信息、自车状态信息、环境信息、地图信息、Routing 结果, 生成未来 8s 的轨迹信息. 最后 Planning 将生成的轨迹交由 Control 模块跟踪执行 .
3. 路由巡径
Routing 中最重要的是了解地图的拓扑结构, 如何将 A* 算法用于搜索, 以及 Cost 设计. 这里不进行展开. 详细见Routing.
4. 行为决策
行为决策的目的:
保障无人车的行车安全并遵守交通规则
为路径和速度的平滑优化提供限制信息
4.1. 输入输出
输入:
Routing信息
道路结构信息: 当前车道, 相邻车道, 汇入车道, 路口
交通信号和标识: 红绿灯, 人行横道, 停车标志
障碍物信息: 障碍物类型, 位置, 大小, 速度, 预测轨迹 输出:
路径信息: 路径长度, 左右限制边界
速度限制和边界
时间上的位置限制边界
4.2. 行为决策模型
行为决策模型分为四类, 其优缺点如下表所示:

4.3. 决策类型

5. 轨迹规划
5.1. 横纵解偶
Planning 模块将轨迹规划分解成路径规划和速度规划两个部分[4].
路径规划: 生成车辆的可行驶曲线. 然后使用成本函数, 对每条曲线进行评估. 选择最低成本的路径.
速度规划: 在选择的路径上, 考虑与障碍物的时空交集, 作出超车, 让行, 跟车, 停车等速度决策. 并使用优化算法, 对决策后的速度进行平滑, 最终得到一条最优的速度曲线. 通过将路径和速度曲线结合, 可以构建车辆的行驶轨迹.

5.2. 路径规划
路径规划的步骤:
对输入的中心线采集点进行平滑, 得到一条方向和曲率都连续的参考线.
将道路分割成单元格, 对单元格中的点进行随机采样, 通过将单元格中的点进行连接, 得到一组候选路径.
计算候选路径的成本, 考虑偏离参考线, 碰撞, 速度限制, 舒适度等要求.
从这些路径中, 选择成本最低的路径.

5.3. 速度规划
速度规划需要使用 ST 图, 横坐标是时间, 纵坐标是行驶距离. 当斜率越大时, 行驶速率越快. 为了构建最佳的速度曲线. 需要把 ST 图网格化. 在每个单元格中, 假设速度不变. 这样得到一个近似的简化的速度曲线.
利用预测规划和 Path 的碰撞检测, 道路上的障碍物可以绘制成在特定时间段内, 阻挡道路的某些部分的矩形(准确的说应该时平行四边形?) 如1图所示.
绘制障碍物ST图
规划无碰撞的速度曲线
选择最佳速度曲线
速度曲线的平滑

① 全网独家视频课程
BEV感知、毫米波雷达视觉融合、多传感器标定、多传感器融合、多模态3D目标检测、点云3D目标检测、目标跟踪、Occupancy、cuda与TensorRT模型部署、协同感知、语义分割、自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习)

② 国内首个自动驾驶学习社区
近2000人的交流社区,涉及30+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(2D检测、分割、2D/3D车道线、BEV感知、3D目标检测、Occupancy、多传感器融合、多传感器标定、目标跟踪、光流估计)、自动驾驶定位建图(SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

③【自动驾驶之心】技术交流群
自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多模态感知、Occupancy、多传感器融合、transformer、大模型、点云处理、端到端自动驾驶、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向。扫码添加汽车人助理微信邀请入群,备注:学校/公司+方向+昵称(快速入群方式)
④【自动驾驶之心】平台矩阵,欢迎联系我们!