YOLO界再起波澜,自动驾驶最强新生代目标检测器!

YOLO系列模型自2015年推出以来,8年时间迭代了11版,证明其领域研究还有极大的改进创新空间。作为目标检测领域的经典模型,YOLO最近又出现了新的变种工作:Mamba YOLO。

别说YOLO卷不动了!魔改一波照样发了AAAI!Mamba YOLO作为目前最强目标检测器,是视觉多模态极具前景的研究课题。为了让大家掌握YOLO系列以及Mamba YOLO,研梦非凡精心研发《速通最强目标检测!11节课大合集》,包括前沿论文精讲和代码演示,已有5000+人观看!11节课让你迅速上手目标检测,活学活用!第11节课将于12月26日晚直播,快来直播间和老师互动答疑解惑!(下滑了解获取2024最新高分目标检测书籍方法)

扫码9.9享原价599 目标检测系列课⬇️

f6506e70966dff29ecd17ba398cba6ec.png

凡开课可享200篇目标检测精选论文&代码+最新目标检测实体书e019fe192afa554afa1022b35ea921c2.png

免费赠书

凡加助教,即免费赠送原价1700元2024年最新高分目标检测书《计算机视觉:对抗视觉中的目标检测》pdf!

b37562f7fef9a8cfcf62fe92690d31fb.png
👇🏻 扫码加助教领pdf!
aed69bd24e33067c6a87185daf71597f.png 

课程大纲

第一课 深度学习目标检测十年

  1. 近十年目标检测发展脉络(重点)

  • 两阶段、单阶段、Anchor Free目标检测算法

  1. 单阶段与双阶段目标检测(重点)

  • 单阶段:以YOLOv8为例

  • 双阶段:以FasterR-CNN为例

  1. Transformer目标检测

  • VIT、DETR架构分析

  1. 目标检测与图像分割

  • Unet、MaskRcnn架构分析

  1. 损失函数详解

  • 分类、定位损失公式讲解

第二课 开放词汇目标检测

  1. 开放词汇目标检测和开集目标检测传统目标检测算法及不足开放词汇目标检测(OVOD)

  • 开集目标检测(OSOD)

  1. YOLO-World简介-YOLO-World主要贡献、网络结构

  2. YOLO-World算法原理(重点)

  • YOLO Detector

  • Text Encoder、RepVL-PAN

  1. 实验分析

  2. YOLO-World代码讲解(重点)

  • 开源代码实战演示

第三课 3D点云目标检测

  1. 点云目标检测

  • 点云基本概念、特性、热门应用等

  1. PillarNext(CVPR'23)点云3D目标检测网络再思考

  • 基于PillarNet改进的主要贡献等3. VoxelNext (CVPR'23)面向3D目标检测的全稀疏体素网络数据集与实验结果

  1. 核心代码讲解(重点)

  • 模型训练和推理演示


👇🏻 扫码加助教开课! 31a15e9d46d4e2808ac187ed6b415bc7.png
凡开课可享200篇目标检测精选论文&代码+最新目标检测实体书

第四课 YOLOv8-更新版本

  1. 目标检测和YOLO系列

  • Anchor生成机制、Anchor Free

  • YOLOv3回硕、YOLOv5回顾

  1. YOLOv8网络结构算法解析、训练任务、测试表现

  2. YOLOv8损失函数

  • 二/多分类交叉熵损失函数等

  1. YOLOv8代码详解(重点)

  2. 项目实战(重点)

  • 遥感图像下的旋转目标检测、数据集

  1. C++部署

  • MNN/NCNN轻量化部署

第五课&第六课 YOLOv8

  1. 目标检测和YOLO系列

  • Anchor生成机制

  • Anchor Free

  • YOLOv3回顾

  • YOLOv5回顾

  1. YOLOv8网络结构

  • YOLOv8算法解析

  • YOLOv8训练任务

  • YOLOv8测试表现

  1. YOLOv8损失函数

  • 二分类交叉熵损失函数

  • 多分类交叉熵损失函数

  • Focal Loss、IOU loss、DOU loss、COU loss、ProbIOU loss

  1. YOLOv8代码详解(重点)

  2. 项目实战(重点)

  • 遥感图像下的旋转目标检测

  • 数据集

  1. C++部署

  • MNN/NCNN轻量化部署

👇🏻 扫码加助教开课立享福利价!

2fff5adab8cb4acb907a6d830db1f486.png
凡开课可享200篇目标检测精选论文&代码+最新目标检测书籍PDF版

第七课 YOLOv8-MOT

  1. YOLOv8实例分割

  • YOLOv8

  • YOLOv8 seg

  • YoLOv8 Tracking

  1. YOLOv8多目标跟踪

  • MOT算法的通常工作流程卡尔曼滤波

  1. 损失函数

  • Hungarian Loss、loU Loss等

  1. 代码讲解(重点)

第八课 YOLOv9

  1. YOLOv9背景和创新点

  • 之前方法存在的问题本文创新点

  1. YOLOv9网络结构(重点)

  2. YOLOv9消融实验

  • 实验过程

  1. 结果分析

  • YOLOv9贡献

  1. 代码速览

第九课 YOLOv10

  1. 背景和创新点

  • 回顾之前的方法

  • YOLOv10的特点

  1. 网络结构和代码搭建

  • Backbone、Head、ClB结构

  1. 标签分配和损失函数

  • Task Aligned Assigner准则、步骤

  1. 代码实战(重点)

  • 模型训练和推理演示

第十课 Grounding DINO

  1. Grounding DINO基本信息

  2. Grounding DIN0与闭集目标检测器的区别

  3. Grounding DINO的特点

  4. Grounding-DINO的总体结构(重点)

  5. 训练方法和实验

  6. 代码&Demo演示(重点)

第十一课 MambaYolo

1. MambaYolo核心根据

2. 相关工作与背景介绍

3. 算法框架 

4. 实验要点 

5. YOLO工作的最新baseline

导师简介

Frank导师(第一~第九课)

国内一线车企研究院资深算法工程师,擅长感知算法方向,在语义分割、车道线检测、2D和3D目标检测、BEV目标检测等领域,具有丰富的项目创新和落地经验。

曾主导多个重大项目,精通算法研究和部署端优化,以主要研究者身份,发表过CVPR多模态方向论文,在CV领域积累了多篇授权和落地专利。

张导师(第十课)

某上市公司高级算法工程师,在自动驾驶感知等视觉领域,拥有5年以上工作经验,尤其是目标检测、目标跟踪、图像分割,以及点云、多模态、模型轻量化和部署方向,一线项目经历丰富,具备高水平的Python、Pytorch等开发能力。

杨导师(第十一课)

【学术背景】在国际顶级会议CVPR,ICCV, EMNLP等发表13篇论文,并担任CVPR,ICCV,ECCV,ICML,ICLR, NeurIPS等重要会议和期刊的审稿人。

【研究方向】计算机视觉,自然语言处理,高效模型压缩算法,多模态大语言模型,包括模型量化,剪枝,蒸馏,编译以及高效稀疏化训练与推理。

杨导师拥有多项发明专利,指导学生有耐心,教学严谨,思维逻辑缜密,已经指导数十篇论文产出。

对于成果好的学生,还可帮助写申博申硕推荐信哦~

研梦非凡导师团队

研梦非凡的导师来自海外QStop50、国内华五、C9、985高校的教授/博士导师/博士后,世界500强公司算法工程师,以及国内外知名人工智能实验室研究员。

这是一支实力强大的高学历导师团队,在计算机科学、机器学习、深度学习等领域,积累了丰富的科研经历,研究成果也发表在国际各大顶级会议和期刊上,在指导学员的过程中,全程秉持初心,坚持手把手个性化带教。包括但不限于以下导师~~

6846613b6e8cee92a669ed362176edd4.pngbf02904bde57bff82e2fadb6816ffc57.png4d9872b85fc36c5158d78d62cf7319f9.png76958e22680f21d94774bc93e31522b1.png

<<< 左右滑动见更多 >>>

扫码为你匹配大牛导师meetinge117b313388f488398f4aef3ed3c35fa.png

如果你预算有限,1对1论文辅导压力太大那《6人尖端科研课题组》是最优选

全新6人尖端科研课题组论文辅导

31aadb1eff2588ea7e53d227f13dcba8.jpeg8611ce2f963c9a0f65f46ef1fb62f3e3.jpeg

<<< 左右滑动见更多 >>>

扫码了解科研课题组论文辅导

19f728c033c94f781573ce935ebc2532.png

我们不是小作坊哦~我们背靠研途考研(就是张雪峰老师和徐涛老师在的那个研途考研),做教育十余年,重交付,重口碑,是我们一贯的公司理念! ffe3062c4227c7da49581a7746622d4e.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值