【图论】【Dijkstra算法】最小花费

该博客探讨了如何使用Dijkstra算法解决一个图论问题:在给定的转账网络中,找到从A到B转账100元时的最小花费路径。博主详细介绍了问题的输入输出格式,并给出了一个例子及解题思路,强调了问题的关键在于寻找最大值的最短路径,同时提醒在实现算法时避免使用memset。
摘要由CSDN通过智能技术生成

题目

在n个人中,某些人的银行账号之间可以互相转账。这些人之间转账的手续费各不相同。给定这些人之间转账时需要从转账金额里扣除百分之几的手续费,请问A最少需要多少钱使得转账后B收到100元。

输入

第一行输入两个用空格隔开的正整数n和m,分别表示总人数和可以互相转账的人的对数。以下m行每行输入三个用空格隔开的正整数x,y,z,表示标号为x的人和标号为y的人之间互相转账需要扣除z%的手续费(z<100)。最后一行输入两个用空格隔开的正整数A和B。数据保证A与B之间可以直接或间接地转账。

输出

输出A使得B到账100元最少需要的总费用。精确到小数点后8位。

输入样例

3 3
1 2 1
2 3 2
1 3 3
1 3

比如:
在这里插入图片描述

输出样例

103.07153164

解题思路

其实这道题就是求出最短的路径,但是要求最大的值.
最后再用100除于它就可以了

注意

因为是求它最小的,所以不能用memset

程序如下

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int x,y,z,k,n,m,q,p,u[2001];
double f[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值