奇偶剪枝

描述

奇偶剪枝是数据结构的搜索中,剪枝的一种特殊小技巧。
现假设起点为(sx,sy),终点为(ex,ey),给定t步恰好走到终点,
s
    
|
    
|
    
|
    
+
e
如图所示(“|”竖走,“—”横走,“+”转弯),易证abs(ex-sx)+abs(ey-sy)为此问题类中任意情况下,起点到终点的最短步数,记做step,此处step1=8;
s
 
 
+
 
|
+
   
|
    
+
e
如图,为一般情况下非 最短路径的任意走法举例,step2=14;
step2-step1=6,偏移路径为6,偶数(易证);

结论

推广之,若 t-[abs(ex-sx)+abs(ey-sy)] 结果为非偶数(奇数),则无法在t步恰好到达;
返回,false;
反之亦反。

原理补充

鉴于很多同学对奇偶剪枝根本原理的兴趣,所以hj决定再补充一下本词条。
还是以这个为例子吧,现在我把矩阵填满 0 和 1
0
1
0
1
0
1
0
1
0
1
0
1
010
1
0101
0
1
0
1
0

我们现假设从 0 开始走,则不难证明,
从任意 0 走到任意 1 始终是奇数步;
从任意 0 走到任意 0 始终是偶数步;
引用描述里的“例子”, s 到 e 的最短步数为 t (当然你也可以理解成此时到终点刚好剩余 t 步等等)。
则,我们从 s 到 e 的步数之和(或者说总距离)总可以表示成 sum= t + extra ( extra>=0 ),其中 extra 表示额外的步数。
比如“例子”里面的,做例1吧
s
 
 
+
 
|
+
   
|
    
+
e
此时 t=8,sum=14,所以我们容易得到 extra=6。也就是说按照这个走法,需要在最短的步数上再走额外的 6 步(先不用太在意这些偏移是在什么地方产生的)。
在来一个例2吧,
s
 
 
+
 
|
+
   
|
 +e
+
  
此时,t=7,sum=15,所以我们也容易得到 extra=8。
根据理科生的天性,由这两个一般性的例子,我们很容易嗅察到 extra 都为偶数。先带着疑惑,
再来看我给的 0 、1 矩阵。
0
1
0
1
0
1
0
1
0
1
0
1
010
1
0101
0
1
0
1
0
设左上角坐标为(1,1),右下角坐标为(5,5).
那么我们给的例1,
起点 s 的坐标为(1,1),此点为“0”;
终点 e 为(5,5),此点为“0”。
所以t=8,为偶数。
现在我们再倒过来看,从终点(也就是 e )出发,把最短步数 t=8 耗费掉,不妨这样走,
s
   +
   
+
   | 
  + 
  
e
如图所示从 e (5,5)耗费 8 步走到了(1,5)点。
因为是从 0 走偶数步,所以走到的坐标也一定是 0 ,就像这里的(1,5)点是 0 一样。
又因为最短步数已经耗费掉了,所以不管怎样,从(1,5)再走回到起点 s 所用的步数总是最开始从起点 s 走到终点 e 所花的某一个额外步数 extra 。
注意到,(1,5)点和起点 s (1,1)都是 0,也就是说,这个 extra 必然是偶数!
再看例2,同样从终点 e 开始耗费 t=7 步,
则所到的点一定是 0 (不管她在哪里),再从这个点回到起点 s ,所用的 extra 也必然是个偶数!
所以无论如何,sum= t + extra ( extra>=0 ) 中的 extra 都是一个偶数
那么我们就可以用公式 t-[abs(ex-sx)+abs(ey-sy)] 计算出extra是否为偶数来判断当前点能否恰好在这么多步到达终点了。
有的同学可能会说以 1 为 起点呢。。其实是一样的啦,自己去捣鼓吧。


  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值