奇偶剪枝--非常巧妙的技巧

奇偶剪枝是数据结构的搜索中,剪枝的一种特殊小技巧。

奇偶剪枝的原理

两点之间的曼哈顿距离(<-有惊喜)为奇数, 则只能在奇数步内到达,偶数同理。

即:假设起点为(x1,y1),终点为(x2,y2),给定 step 步恰好走到终点,则 abs(x2-x1)+abs(y2-y1) 与 step 同奇偶。

证明

以图代证:
在这里插入图片描述
一开始没有障碍,“#”表示可以走,S 到 E 的最短步数为6。

接下来有障碍了,要绕路。
在这里插入图片描述
黑色的路是最短路,蓝色是最短路的平移,不影响步数,所以只有红色的路是绕的路即多走的路。
通过观察,可以发现一半是远离终点,一半是靠近终点,走的路是对称的,所以多走的步数一定是偶数!

所以要是问走 X 步能否到达e,就算出最短路径长 Y,如果 X-Y 是偶数就能到达,否则不能到达!

通过例题来感受一下吧!
Tempter of the Bone 来剪枝吧

代码如下

#include <iostream>
#include <algorithm>

using namespace std;
int n, m, t;
int dx[]={0,1,0,-1},dy[]={-1,0,1,0};
int x1, y1, x2, y2;
char maps[10][10];
bool flag;
 
bool inbound(int x, int y) 
{	
	return(x>=0&&x<n&&y>=0&&y<m&&maps[x][y]!='X');
}
void dfs(int a, int b, int step) 
{
	if (step > t || flag) return;
	
	if (step == t && a == x2 && b == y2) 
	{
		flag = true;
		return;
	}
	
	int res = t-step-(abs(a - x2)+abs(b - y2));
	if (res < 0 || res & 1) return ;	//奇偶剪枝
	
	for (int i = 0; i < 4; i++) 
	{
		int x = a + dx[i];
		int y = b + dy[i];
		if (inbound(x, y)) 
		{
			maps[x][y] = 'X';		
			dfs(x, y, step + 1);
			maps[x][y] = '.';
		}
	}
}
int main() 
{
	while (scanf("%d%d%d", &n, &m, &t) != EOF) 
	{
		if (n == 0 && m == 0 && t == 0) break;
		
		flag = false;
		
		for (int i = 0; i < n; i++) 
		scanf("%s", maps[i]);
		
		int block = 0;
		
		for (int i = 0; i < n; i++) 
			for (int j = 0; j < m; j++) 
			{
				if (maps[i][j] == 'S') 
					x1 = i, y1 = j;
				
				else if (maps[i][j] == 'D') 
					x2 = i, y2 = j;
				
				else if (maps[i][j] == 'X') 
					block++;
			}
			
		if (n * m - block <= t) 
		{
			printf("NO\n");
			continue;
		}
		
		maps[x1][y1] = 'X';
		
		dfs(x1, y1, 0);
		
		if (flag) 
			printf("YES\n");
			
		else 
			printf("NO\n");
	}
	return 0;
}

欢迎点赞与评论~
记得收藏

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值