奇偶剪枝是数据结构的搜索中,剪枝的一种特殊小技巧。
奇偶剪枝的原理
两点之间的曼哈顿距离(<-有惊喜)为奇数, 则只能在奇数步内到达,偶数同理。
即:假设起点为(x1,y1),终点为(x2,y2),给定 step 步恰好走到终点,则 abs(x2-x1)+abs(y2-y1) 与 step 同奇偶。
证明
以图代证:
一开始没有障碍,“#”表示可以走,S 到 E 的最短步数为6。
接下来有障碍了,要绕路。
黑色的路是最短路,蓝色是最短路的平移,不影响步数,所以只有红色的路是绕的路即多走的路。
通过观察,可以发现一半是远离终点,一半是靠近终点,走的路是对称的,所以多走的步数一定是偶数!
所以要是问走 X 步能否到达e,就算出最短路径长 Y,如果 X-Y 是偶数就能到达,否则不能到达!
通过例题来感受一下吧!
Tempter of the Bone 来剪枝吧
代码如下
#include <iostream>
#include <algorithm>
using namespace std;
int n, m, t;
int dx[]={0,1,0,-1},dy[]={-1,0,1,0};
int x1, y1, x2, y2;
char maps[10][10];
bool flag;
bool inbound(int x, int y)
{
return(x>=0&&x<n&&y>=0&&y<m&&maps[x][y]!='X');
}
void dfs(int a, int b, int step)
{
if (step > t || flag) return;
if (step == t && a == x2 && b == y2)
{
flag = true;
return;
}
int res = t-step-(abs(a - x2)+abs(b - y2));
if (res < 0 || res & 1) return ; //奇偶剪枝
for (int i = 0; i < 4; i++)
{
int x = a + dx[i];
int y = b + dy[i];
if (inbound(x, y))
{
maps[x][y] = 'X';
dfs(x, y, step + 1);
maps[x][y] = '.';
}
}
}
int main()
{
while (scanf("%d%d%d", &n, &m, &t) != EOF)
{
if (n == 0 && m == 0 && t == 0) break;
flag = false;
for (int i = 0; i < n; i++)
scanf("%s", maps[i]);
int block = 0;
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
{
if (maps[i][j] == 'S')
x1 = i, y1 = j;
else if (maps[i][j] == 'D')
x2 = i, y2 = j;
else if (maps[i][j] == 'X')
block++;
}
if (n * m - block <= t)
{
printf("NO\n");
continue;
}
maps[x1][y1] = 'X';
dfs(x1, y1, 0);
if (flag)
printf("YES\n");
else
printf("NO\n");
}
return 0;
}
欢迎点赞与评论~
记得收藏