【学习笔记】市场机制设计

日常 专栏收录该内容
47 篇文章 1 订阅

Lecture 1

  1. 博弈模型输入: ( S 1 , u 1 ) , ( S 2 , u 2 ) , . . . , ( S n , u n ) {(S_1,u_1),(S_2,u_2),...,(S_n,u_n)} (S1,u1),(S2,u2),...,(Sn,un)
  • S i S_i Si为第 i i i个参与者的策略集合
  • u i u_i ui为第 i i i个参与者的效用函数,参数为所有 n n n个参与者所有策略的集合 ( s 1 , s 2 , . . . , s n ) (s_1,s_2,...,s_n) (s1,s2,...,sn)
  1. 定义: 称策略 s i s_i si相对于 s i ′ s^{\prime}_{i} si强绝对占优的策略, 若对于任意 s − i ∈ S − i s_{-i}∈S_{-i} siSi, 有 u i ( s i , s − i ) > u i ( s i ′ , s − i ) u_i(s_i,s_{-i})\gt u_i(s^{\prime}_{i},s_{-i}) ui(si,si)>ui(si,si)
  2. 定义: 称策略 s i s_i si相对于 s i ′ s^{\prime}_{i} si弱绝对占优的策略, 若对于任意 s − i ∈ S − i s_{-i}∈S_{-i} siSi, 有 u i ( s i , s − i ) ≥ u i ( s i ′ , s − i ) u_i(s_i,s_{-i})\ge u_i(s^{\prime}_{i},s_{-i}) ui(si,si)ui(si,si)
  3. 定义: 称策略 s ∗ ∈ S 1 × S 2 × … × S n s^{*}∈S_1×S_2×…×S_n sS1×S2××Sn是一个纯纳什均衡(PNE)对于博弈 ( S 1 , u 1 ) , ( S 2 , u 2 ) , . . . , ( S n , u n ) {(S_1,u_1),(S_2,u_2),...,(S_n,u_n)} (S1,u1),(S2,u2),...,(Sn,un), 若对于任意 i i i以及任意 s i ∈ S i s_i∈S_i siSi,有 u i ( s i ∗ , s − i ∗ ) > u i ( s i , s − i ∗ ) u_i(s^{*}_{i},s^{*}_{-i})\gt u_i(s_{i},s^{*}_{-i}) ui(si,si)>ui(si,si)
  4. 定义: 称混合策略 σ ∗ ∈ Δ ( S 1 ) × Δ ( S 2 ) × … × Δ ( S n ) \sigma^{*}∈\Delta(S_1)×\Delta(S_2)×…×\Delta(S_n) σΔ(S1)×Δ(S2)××Δ(Sn)是一个纳什均衡对于博弈 ( S 1 , u 1 ) , ( S 2 , u 2 ) , . . . , ( S n , u n ) {(S_1,u_1),(S_2,u_2),...,(S_n,u_n)} (S1,u1),(S2,u2),...,(Sn,un)若对于任意 i i i以及任意 s i ∈ S i s_i∈S_i siSi,有 u i ( σ i ∗ , σ − i ∗ ) ≥ u i ( s i , σ − i ∗ ) u_i(\sigma^{*}_{i},\sigma^{*}_{-i})\ge u_i(s_{i},\sigma^{*}_{-i}) ui(σi,σi)ui(si,σi)
  • 如石头剪刀布博弈中的纳什均衡是混合策略 σ 1 = σ 2 = ( 1 3 , 1 3 , 1 3 ) \sigma_1=\sigma_2=(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}) σ1=σ2=(31,31,31)

课后习题

  1. 如果用绝对占优策略来删除行列的方法得到最后一个方格, 证明这是一个纳什均衡
  2. 证明: 石头剪刀布中(1/3,1/3,1/3)的混合策略是唯一的纳什均衡

下节课的内容

  1. Single Item Auction: 单品拍卖
  • Setup: 1个商品, 1个卖家, n n n个买家
  • 买家 i i i对商品有一个价值估计 v i v_i vi, 约等于愿意付出的最高价额, v i v_i vi对除买家 i i i外的所有其他人都是未知
  • 效用模型: quaslinear utility, 准线性模型
    • 如果未能拍得商品, 则 u = 0 u=0 u=0
    • 如果最终拍得商品, 则 p = v i − p p=v_i-p p=vip
  1. Sealed-Bid Auctions 封存标价拍卖
  • Setup:
    • 每个买家同时提交竞价 b i b_i bi, 只有一次竞价机会且结果对除卖家外的所有人都不可见
    • 卖家决定谁是赢家
    • 卖家决定赢家应当付多少钱
  • 显然第二步应当选取出价最高者
  • 可能的第三步策略:
    • First-price-auction: 一价拍卖, 赢家出其所报的价钱
    • Second-price-auction: 次价拍卖

Lecture 2

  1. 2nd-price/Vickrey Auction: 次价拍卖, 竞价最高者付第二高竞价者所出的价格
  • 一价拍卖机制存在漏洞, 不能使得每个人都足够诚实, 因而引出次价拍卖
  • Claim1: 在一个次价拍卖中, 每个竞价这有一个占优策略, b i ⇐ v i b_i\Leftarrow v_i bivi, 比如每个竞价这都出自己的估值 v i v_i vi, 事实上也是如此
    • 证明:
      • 对于给定的 i i i, v i v_i vi和其他的竞价 b − i b_{-i} bi, 显然第 i i i个人的效用在竞价出 v i v_i vi时得到了最大化
      • B = m a x j ≠ i b i B = max_{j\ne i}b_i B=maxj=ibi, 即除了第 i i i个人外所有人竞价的最大值
      • 注意因为在次价拍卖中, 第 i i i的效用要么是0, 要么是 B − v i B-v_i Bvi
  • Claim2: 在次价拍卖中, 如果说真话, 就不会得到负的效用
    • 因为成交价格对于竞价成功者来说一定是小于
  • 定理: Vickrey auction是awesome的
    • Vickrey action是dominant-strategy incentive compatible, 即SSIC
      • 即Claim1+Claim2的结论, 每个人说真话是占优策略, 且不会得到负的效用
    • 如果竞价者是可以信赖的, 则拍卖最大化了社会剩余/社会福利
      • 社会剩余/社会福利 = ∑ i = 1 n v i x i   x i ∈ { 0 , 1 } \sum_{i=1}^n v_i x_i \space x_i ∈ \{0,1\} i=1nvixi xi{0,1},当第 i i i个人赢得了拍卖, x i x_i xi为1, 否则为0
    • Vickrey auction是可以在多项式时间内实现的
      • 案例分析: Sponsored Search Auction
        • 每次搜索, 就会实时发生一次拍卖
        • 商品: 搜索结果页面上的 k k k个广告位
        • 竞价者: 对于搜索结果页面有兴趣的商家
        • 注意: k k k个广告位不是相同, 排在越靠前的广告位价值越高
        • α j \alpha_j αj为第 j j j个广告位被点击的概率, 即CTR
        • 假设:
          • α 1 ≥ α 2 ≥ . . . ≥ α k \alpha_1\ge \alpha_2\ge ... \ge \alpha_k α1α2...αk
          • α j \alpha_j αj 是相互独立的
          • 竞价者 i i i对每一次点击都有一个私有的评估价格 v i v_i vi, 搜索引擎与其他竞价者都无法知道, 搜索引擎与其他竞价者都无法知道, 从而会得到 v i ∗ α j v_i*\alpha_j viαj
        • 目标:
          • 设计一个DSIC拍卖
          • 最大化社会剩余, 即 m a x i m i z e ∑ i = 1 n v i ∗ α i maximize \sum_{i=1}^n v_i*\alpha_i maximizei=1nviαi, 其中 x i x_i xi是第 i i i个广告位目标被点击的概率(广告位 i i i被分配给了 i i i), 否则为0
          • 可以在多项式时间内得出结果
        • 方法:
          • Step1: 若竞价者诚信竞价, 那么应该怎么分配使得最大化剩余以及确保算法的时间复杂度为多项式时间
          • Step2: 给定Step1的回答, 需要确定定价策略使得是一个DSIC拍卖
        • 答案: 按照竞价高低的顺序从前到后依次分配各个广告位, 即第 j j j高的竞价者分配第 j j j个广告位
          • 假设最终是 α i \alpha_i αi v i v_i vi对应, 显然 v i v_i vi应当是单调不增的, 这样才能使得 ∑ i = 1 n v i ∗ α i \sum_{i=1}^n v_i*\alpha_i i=1nviαi取得最大值
      • Myerson’s引理:
        • Single-parameter environment
          • n n n个竞价者, 第 i i i个竞价者对拍卖品有一个私有的估值 v i v_i vi/单位
          • feasible allocations: X = { x 1 , x 2 , . . . , x n } X = \{x_1,x_2,...,x_n\} X={x1,x2,...,xn}, 其中 x i x_i xi是第 i i i个竞价者得到的单位商品数量
          • 举个例子:
            • Single-Item Auction: 所有可能的分配方案 X = { ( 1 , 0 , . . . , 0 ) , ( 0 , 1 , . . . , 0 ) , ( 0 , 0 , . . . , 1 ) } X=\{(1,0,...,0),(0,1,...,0),(0,0,...,1)\} X={(1,0,...,0),(0,1,...,0),(0,0,...,1)}
            • Sponsored Search Auction: X X X为如何分配 k k k个广告位的方法
          • 我们仍然在Sealed-Bid Auction的环境下研究这个问题
            • 收集所有的竞价 b ⃗ = { b 1 , b 2 , . . . , b n } \vec b=\{b_1,b_2,...,b_n\} b ={b1,b2,...,bn}
            • 分配规则, 选择 X ⃗ ( b ⃗ ) ∈ X ⊆ R n \vec X(\vec b)∈X\subseteq R^n X (b )XRn, X X X为一个N维向量
            • 付款规则: 选择 p ( b ⃗ ) ∈ R n p(\vec b)∈R^n p(b )Rn
            • i i i个人的效用在 b ⃗ \vec b b 上等于 v i ∗ x i ( b ⃗ ) − p i ( b ⃗ ) v_i*x_i(\vec b)-p_i(\vec b) vixi(b )pi(b )
            • 重点是如何确定付款规则使得 p i ( b ⃗ ) ∈ [ 0 , b i ∗ X i ( b ⃗ ) ] p_i(\vec b)∈[0, b_i*X_i(\vec b)] pi(b )[0,biXi(b )], 即确保卖家不会倒贴, 竞价者不会得到负的效用
            • 定义: 一个分配规则 X ⃗ ( ⋅ ) \vec X(·) X ()是可以实施的(implementable), 若存在一种付款规则 p ( ⋅ ) p(·) p()使得 ( X ⃗ , p ) (\vec X,p) (X ,p)是DSIC
              • 付款规则1: 将商品给到出价最高的竞价者?
              • 付款规则2: 将商品给到出价第二高的竞价者?
              • Sponsored Search Auction中的分配方案是否是DSIC的?
            • 定义: 一个分配规则 X ⃗ ( ⋅ ) \vec X(·) X ()是单调的(monotone), 若对于任意 i i i和任意 b − i b_{-i} bi, X ( z , b − i ) X(z,b_{-i}) X(z,bi)是不减的在它的所有竞价 z z z中, 即高竞价者将会获得更多的商品
        • Myerson’s引理内容
          • 一个分配规则 X ⃗ ( ⋅ ) \vec X(·) X ()是可以实施的等价于 X ⃗ ( ⋅ ) \vec X(·) X ()是单调的
          • 在这种情况下, 存在唯一的付款规则 p ( ⋅ ) p(·) p()使得 ( X ⃗ , p ) (\vec X,p) (X ,p)是DSIC
          • p ( ⋅ ) p(·) p()是可以被一个直接的公式给出(TBD)
        • 推论: 不会把商品出售给第二高的竞价者, Sponsored Search Auction中的策略是可以实施的
        • Myerson’s引理证明(Slide P.21)
          • 考虑一个分配规则 X ⃗ ( ⋅ ) \vec X(·) X (), 若 ( X ⃗ , p ) (\vec X,p) (X ,p)是DSIC, 那么 p ( ⋅ ) p(·) p()应该是什么样的?
          • 证明分配规则是单调的: 固定 i i i b − i b_{-i} bi, 写出 X ⃗ ( z ) , p ( z ) \vec X(z), p(z) X (z),p(z)对于 X i ( z , b − i ) X_i(z,b_{-i}) Xi(z,bi) p i ( z , b − 1 ) p_i(z,b_{-1}) pi(z,b1)
            • y ≥ z ≥ 0 y\ge z\ge 0 yz0, DSIC需要兼顾两种情况, 即对于竞价者 i i i来说, 不管高报或者低报都无法得到最高效用
              • [true value = z, false bid = y], z ∗ X ( z ) − p ( z ) ≥ z ∗ X ( y ) − p ( y ) z*X(z)-p(z)\ge z* X(y)-p(y) zX(z)p(z)zX(y)p(y)(注意不是 y ∗ X ( y ) − p ( y ) y*X(y)-p(y) yX(y)p(y))
              • [true value = y, false bid = z], y ∗ X ( y ) − p ( y ) ≥ y ∗ X ( z ) − p ( z ) y*X(y)-p(y)\ge y*X(z)-p(z) yX(y)p(y)yX(z)p(z)
              • 移项后 z ( X ( y ) − X ( z ) ) ≤ p ( y ) − p ( z ) ≤ y ( X ( y ) − X ( z ) ) z(X(y)-X(z)) \le p(y)-p(z) \le y( X(y)-X(z)) z(X(y)X(z))p(y)p(z)y(X(y)X(z)), 得到 X ( y ) ≥ X ( z ) X(y)\ge X(z) X(y)X(z) X ⃗ ( ⋅ ) \vec X(·) X ()是单调的
            • 证明单调的分配规则是有一个付款规则与其对应使得DSIC:
              • 书上的证明: 简单起见, 假设 X X X函数的图像是place-wise constant, 即图像上是一段一段都是常数, 但是整体是单调不减, 存在跳跃间断点; 从图像上来看, 给竞价值的点, 付款值应当等于 X X X函数的图像, y轴, 该点处的水平线围成的面积
              • 另一种证明: 在 z ( X ( y ) − X ( z ) ) ≤ p ( y ) − p ( z ) ≤ y ( X ( y ) − X ( z ) ) z(X(y)-X(z)) \le p(y)-p(z) \le y(X(y)-X(z)) z(X(y)X(z))p(y)p(z)y(X(y)X(z))各个位置除以 ( y − z ) (y-z) (yz), 当 y y y逼近 z z z时就会有 z X ′ ( z ) = p ′ ( z ) zX^\prime(z) = p^\prime(z) zX(z)=p(z), 且有卖家不会倒贴竞价者所以 p ( 0 ) = 0 p(0)=0 p(0)=0, 则 p ( ⋅ ) p(·) p()是可以被唯一确定的, p ( b ) = b X ( b ) − ∫ 0 b X ( z ) d z p(b)=bX(b)-\int_{0}^bX(z)dz p(b)=bX(b)0bX(z)dz
            • 最后我们证明 p p p是有效的当 X X X是单调的(充分性证明, 上面一步是必要性证明)
              • z X ( z ) − p ( z ) = z X ( y ) − p ( y ) + S zX(z)-p(z)=zX(y)-p(y)+S zX(z)p(z)=zX(y)p(y)+S, 其中S是图像上多出来的那块面积
              • 效用是曲线下方的面积, revenue是曲线上方的面积
              • 在Sponsored Search Auction中: p i ( b ) = ∑ j = i k b j + 1 ( α j − α j + 1 ) [ α k n = 0 ] p_i(b) = \sum_{j=i}^k b_{j+1}(\alpha_j - \alpha_{j+1})[\alpha_{kn}=0] pi(b)=j=ikbj+1(αjαj+1)[αkn=0] 实际情况中是真正点击了才会付钱, p i ( b ) α i = ∑ j = i k b j + 1 α j − α j + 1 α i \frac{p_i(b)}{\alpha_i} = \sum_{j=i}^kb_{j+1}\frac{\alpha_j-\alpha_{j+1}}{\alpha_{i}} αipi(b)=j=ikbj+1αiαjαj+1

课后习题

  1. 如果在次价格拍卖中, 如果你不说真话, 总是存在一种情况使得你的效用比说真话要低?
  2. n n n个人 k k k个相同商品的拍卖问题, 应当以什么价格成交?

Lecture 3

  1. Knapsack Auctions: 背包拍卖(对应背包问题)
  • n n n个竞价者, 第 i i i个竞价者有一个私有的估值 v i v_i vi和一个公开的背包大小 w i w_i wi
  • 卖家有一个商品总容量 W W W, 比如卖家是广告商, 广告总时长只有三分钟
  • 可行集合 X X X是一个零一向量 ( x 1 , x 2 , . . . , x n ) (x_1,x_2,...,x_n) (x1,x2,...,xn), 使得 ∑ i = 1 n w i ∗ x i ≤ W \sum_{i=1}^n w_i*x_i\le W i=1nwixiW
    • w i = 1   W = i w_i=1\space W=i wi=1 W=i or k k k, 则退化成单品或多品拍卖
    • 显然这里每个人的背包都是要被装满的, 不会存在背包不装满的情况
  • 按照社会福利最大化规则作为分配规则来分配所有的拍卖物: X ( b ⃗ ) = a r g m a x x ∈ X ∑ i = 1 n b i ∗ x i X(\vec b) = argmax_{x∈X}\sum_{i=1}^n b_i*x_i X(b )=argmaxxXi=1nbixi, 即解决背包问题
  • 背包问题是NP-hard, 因此不能在短时间内计算得出结果
  • ( X , p ) (X,p) (X,p)是awesome的吗?
    • ① DSIC(√)
    • ② 社会福利最大化(√)
    • ③ 多项式时间内求解(×)
    • 此时我们不可能relax①, 可以考虑relax②和③
  • 我们的方法: relax③ 如使用动态规划在伪多项式时间内解决
  • 另一种我们希望尽可能少的relax②, 使得服从①和③, 等价于relax②使得③依然单调, 比如使用近似算法(Approximate Algorithm)
  • Best-case scenario: match best-known guarantee without any monotinicity or DSIC constraints
  • 背包问题的贪心算法(一种近似算法)
    • ① 按照 b i / w i b_i/w_i bi/wi的值对竞价者进行降序排序, 即按照单位出价排序
    • ② 挑选该排序下的竞价者加入背包, 直到某个竞价者不再能被装入背包, 就停止(不会继续向后寻找, 否则不满足单调性)
    • ③ 返回两者之一: {the solution of ②, 出价最高的竞价者}, 选择那个可以得到最大化社会福利的选择
      • 之所以要选择出价最高者, 因为可能②的结果是相当差的, 假想有一个出价很高的也买很多, 但是排序前几的几个小买单太低使得大买单无法进入背包就显然不合适
    • 这种算法是2-approx的, 即至少可以达到最优解一半的目标函数值(社会福利)
    • 难点在于并非所有近似算法给出都可以给出单调的分配规则
  1. Revelation Principle: 显示原理
  • 至今为止我们都主要研究DSIC机制
    • ①每个竞价者都有一个占优策略
    • ②这个占优策略就是说真话(direct revelation)
  • 考虑relax①, 结果需要假设玩家是均衡的(equilibrium)
    • 纳什均衡, 贝叶斯纳什均衡
    • Pros: 有时可以得到更好的均衡表现
  • 考虑relax②, 不需要给定①, ②仍然是不失一般性的(WLOG)
  • 显示原理:
    • 任意一个拥有guaranteed占优策略的机制 M M M, 存在一个均衡的直接显示的(equilvalent direct-revelation, 可以理解为说真话)DSIC机制 M ′ M^{\prime} M
    • 证明: by simulation argument
      • 输入n个报价 { v 1 , v 2 , . . . , v n } \{v_1,v_2,...,v_n\} {v1,v2,...,vn}进入 M ′ M^{\prime} M, M ′ M^{\prime} M将它们变成 { s 1 ( v 1 ) , s 2 ( v 2 ) , . . . , s n ( v n ) } \{s_1(v_1),s_2(v_2),...,s_n(v_n)\} {s1(v1),s2(v2),...,sn(vn)}后输入 M M M, 得到 M M M的输出后再由 M ′ M^{\prime} M输出最终结果
      • 举个例子: 次价拍卖中将成交价改为第二名报价的两倍, 则每个人的报价将为估值的一半, 即 M M M M ′ M^{\prime} M中的出价总可以映射

        考虑一个拍卖, 所有竞拍方都只知道自己对物品的估值, 拍卖的结果由所有竞拍方的报价决定; 这是一个间接机制, 对物品估值为 a a a的竞拍方的策略是报价 f ( a ) f(a) f(a); 用另一个方式考虑这个拍卖, 竞拍方报出自己对物品的估值, 一个机器或者代理人自动根据报出的估值报价, 这就是直接机制, 竞拍方的策略变成了是否真实报估值;
        显示原理就是任何间接机制都可以以上述这种方式等价于一个直接机制; 直接机制比间接机制方便研究, 所以显示原理很重要;

  1. Revenue Maximization: (卖家)收益最大化(Slide P.33)
  • 至今为止, 我们只考虑了社会福利最大化的拍卖
  • 为什么?
    • DSIC
    • sourplus是特殊的, 甚至事后(ex-post)也是最大化的(若所有的报价都是实现知道的)
  • Example: 一个竞价者, 一个物品
    • DSIC拍卖为拍卖(posted price) r r r
    • 收益revenue R ∈ { r , 0 } R ∈ \{r, 0\} R{r,0}, 即 v ≥ r v\ge r vr时为 r r r, 反之为零
    • 为了最大化收益, 如果我们知道 v v v, 那就设成 r = v r=v r=v
    • Upshot: 对于收益来说, 不同的拍卖在不同的输入上做得更好
    • 所以需要一个模型来解释(reason about)不同输入间的trade-off
    • Bayes Analysis: 贝叶斯分析
      • 单变量环境
      • v i v_i vi是从分布 F i F_i Fi中采样得到的, 取值范围 [ 0 , v m a x ] [0,v_{max}] [0,vmax]
      • F i F_i Fi都是独立的, 对于机制设计者是可知的, 但是实际估值 v i v_i vi都是不可知的
      • 最大化期望收益
      • Example: 一个竞价者, 一个物品
        • 期望收益是 r ( 1 − F ( r ) ) r(1-F(r)) r(1F(r))
        • F F F U n i f o r m [ 0 , 1 ] Uniform[0,1] Uniform[0,1] r ∗ = 0.5 r^{*}=0.5 r=0.5
      • Example: 两个竞价者, 一个物品
        • 已知 v 1 , v 2 ∼ U n i f o r m [ 0 , 1 ] v_1,v_2 \sim Uniform[0,1] v1,v2Uniform[0,1]
        • Vickrey次价拍卖的收益为 E [ m i n ( v 1 , v 2 ) ] = 1 3 E[min(v_1,v_2)]=\frac{1}{3} E[min(v1,v2)]=31
        • 假若我们设定一个起拍价格 0.5 0.5 0.5, 则可以得到 5 12 \frac{5}{12} 125的期望收益
  • 目标: characterize最优拍卖
    • ①revelation principle⇒可以restrict to direct-revelation
      • ( X , p ) (X,p) (X,p)==>总是假设 b = v b=v b=v
      • Revenue: E v ⃗ ( ∑ i = 1 n p i ( v ⃗ ) ) E_{\vec v}(\sum_{i=1}^n p_i(\vec v)) Ev (i=1npi(v ))
    • ②拍卖期望收益的重要公式
      • 回顾: Myerson’s payment formula
        • p i ( v ⃗ ) = ∫ 0 v i z ∗ X i ′ ( z , v ⃗ − i ) d z = v i ∗ X i ′ ( v ⃗ ) − ∫ 0 v i X i ′ ( z , v ⃗ − i ) d z p_i(\vec v)=\int_{0}^{v_i}z*X_i^{\prime}(z,\vec v_{-i})dz=v_i*X_i^{\prime}(\vec v)-\int_{0}^{v_i}X_i^{\prime}(z,\vec v_{-i})dz pi(v )=0vizXi(z,v i)dz=viXi(v )0viXi(z,v i)dz即为 X i ( z ) X_i(z) Xi(z)关于 z z z的曲线左边的面积
    • (详细推导Slide P.38-40)固定 i i i v − i v_{-i} vi, 有
      E v i ∼ F i [ p i ( v ⃗ ) ] = ∫ 0 v m a x p i ( v ⃗ ) f i ( v i ) d v i = ∫ 0 v m a x [ ∫ 0 v i z X i ′ ( z , v ⃗ − i ) ] f i ( v i ) d v i = ∫ 0 v m a x [ ∫ z v m a x f i ( v i ) ] ) z X i ′ ( z , v ⃗ − i ) d v i = ∫ 0 v m a x ( 1 − F i ( z ) ) z X i ′ ( z , v ⃗ − i ) d z = ( 1 − F i ( z ) ) z X i ( z , v ⃗ − i ) ∣ 0 v m a x − ∫ 0 v m a x X i ( z , v ⃗ − i ) d ( z ( 1 − F i ( z ) ) ) = − ∫ 0 v m a x X i ( z , v ⃗ − i ) ( 1 − F i ( z ) − z f i ( z ) ) d z = ∫ 0 v m a x [ z − 1 − F i ( z ) f i ( z ) ] f i ( z ) X i ( z , v ⃗ − i ) d z E_{v_i\sim F_i}[p_i(\vec v)] = \int_{0}^{v_{max}}p_i(\vec v)f_i(v_i)dv_i\\ =\int_{0}^{v_{max}}[\int_{0}^{v_i}zX_i^{\prime}(z,\vec v_{-i})]f_i(v_i)dv_i\\ =\int_{0}^{v_{max}}[\int_{z}^{v_{max}}f_i(v_i)])zX_i^{\prime}(z,\vec v_{-i})dv_i\\ =\int_{0}^{v_{max}}(1-F_i(z))zX_i^{\prime}(z,\vec v_{-i})dz\\ =(1-F_i(z))zX_i(z,\vec v_{-i})|_{0}^{v_{max}}-\int_{0}^{v_{max}}X_i(z,\vec v_{-i})d(z(1-F_i(z)))\\ =-\int_{0}^{v_{max}}X_i(z,\vec v_{-i})(1-F_i(z)-zf_i(z))dz\\ =\int_{0}^{v_{max}}[z-\frac{1-F_i(z)}{f_i(z)}]f_i(z)X_i(z,\vec v_{-i})dz\\ EviFi[pi(v )]=0vmaxpi(v )fi(vi)dvi=0vmax[0vizXi(z,v i)]fi(vi)dvi=0vmax[zvmaxfi(vi)])zXi(z,v i)dvi=0vmax(1Fi(z))zXi(z,v i)dz=(1Fi(z))zXi(z,v i)0vmax0vmaxXi(z,v i)d(z(1Fi(z)))=0vmaxXi(z,v i)(1Fi(z)zfi(z))dz=0vmax[zfi(z)1Fi(z)]fi(z)Xi(z,v i)dz
    • 定义virtual valuation ϕ i ( z ) = z − 1 − F i ( z ) f i ( z ) \phi_i(z)=z-\frac{1-F_i(z)}{f_i(z)} ϕi(z)=zfi(z)1Fi(z)
      • 在均匀分布中有 F i ( z ) = z F_i(z)=z Fi(z)=z, f i ( z ) = 1 f_i(z)=1 fi(z)=1, ϕ i ( z ) = z − 1 − z 1 = 2 z − 1 \phi_i(z)=z-\frac{1-z}{1}=2z-1 ϕi(z)=z11z=2z1
    • E v i [ p i ( v ⃗ ) ] = E v i [ ϕ i ( v i ) ∗ X i ( v ⃗ ) ] E_{v_i}[p_i(\vec v)]=E_{v_i}[\phi_i(v_i)*X_i(\vec v)] Evi[pi(v )]=Evi[ϕi(vi)Xi(v )]对于任意的 i , v ⃗ − i i,\vec v_{-i} i,v i
    • apply E v ⃗ − i E_{\vec v_{-i}} Ev i E v ⃗ [ p i ( v ⃗ ) ] = E v ⃗ [ ϕ i ( v i ) ∗ X i ( v ⃗ ) ] E_{\vec v}[p_i(\vec v)]=E_{\vec v}[\phi_i(v_i)*X_i(\vec v)] Ev [pi(v )]=Ev [ϕi(vi)Xi(v )]
    • 由期望的线性, 有
      ∑ i = 1 n E v ⃗ [ p i ( v ⃗ ) ] = ∑ i = 1 n E v ⃗ [ ϕ i ( v i ) ∗ X i ( v ⃗ ) ] = E v ⃗ [ ∑ i = 1 n ϕ i ( v i ) ∗ X i ( v ⃗ ) ] \sum_{i=1}^{n}E_{\vec v}[p_i(\vec v)]=\sum_{i=1}^{n}E_{\vec v}[\phi_i(v_i)*X_i(\vec v)]=E_{\vec v}[\sum_{i=1}^{n}\phi_i(v_i)*X_i(\vec v)] i=1nEv [pi(v )]=i=1nEv [ϕi(vi)Xi(v )]=Ev [i=1nϕi(vi)Xi(v )]
      • i.e. 期望revenue 等于 期望的virtual surplus(EXPECTED REVENUE = EXPECTED VIRTUAL VALUE
      • 我们的想法就是逐点最大化这个式子, 比如对于每个 v ⃗ \vec v v , 定义 X ( v ⃗ ) X(\vec v) X(v )来最大化 ∑ i n ϕ i ( v i ) X i ( v ⃗ ) \sum_{i}^{n}\phi_i(v_i)X_i(\vec v) inϕi(vi)Xi(v )
      • i.e. 拍卖赢家是有最高 ϕ i ( v i ) \phi_i(v_i) ϕi(vi)的竞价者, 或者没有赢家如果所有的 ϕ i ( v i ) \phi_i(v_i) ϕi(vi)都是小于零的
      • Catch: is the rule X X X monotone? 即 ϕ \phi ϕ是单调的吗?
      • 事实上 ϕ i ( v i ) \phi_i(v_i) ϕi(vi)总是单调的, 上面的均匀分布的结果是 2 z − 1 2z-1 2z1即为单调, 这并非偶然
      • 定义: F F F是常规的(regular), 若 ϕ F ( z ) = z − 1 − F i ( z ) f i ( z ) \phi_F(z)=z-\frac{1-F_i(z)}{f_i(z)} ϕF(z)=zfi(z)1Fi(z)是严格递增的
      • Note: 假设 F F F是常规的且是独立同分布的, 即所有人的估值分布都是一样的, 则highest valuation( ϕ \phi ϕ) <==> highest virtual value( v v v)
      • 对于iid的常规竞价者, Vickrey of reserve price ϕ − 1 ( 0 ) \phi^{-1}(0) ϕ1(0)
      • 即两个人都比 ϕ − 1 ( 0 ) \phi^{-1}(0) ϕ1(0)低就不卖, 有一个高于则按照较低出价者的出价来成交
      • 但是有可能 ϕ \phi ϕ v v v并非是同大同小的, 这可能是不公正的

课后习题

  1. 背包问题中的社会福利最大化规则是单调的(事实上这对于一切单变量环境都是单调的)==>由Myerson’s Lemma给出付款规则 p p p使得 ( x , p ) (x,p) (x,p)DSIC
  • 给定 i , b ⃗ − i i, \vec b_{-i} i,b i如果 X i ( b i ) = 1 X_i(b_i)=1 Xi(bi)=1 p i ( b ) = p_i(b)= pi(b)= critic bid = i =i =i竞价者赢得拍卖的最低出价, 曲线左边的面积是竞价者剩余
  1. 证明背包问题的贪心算法是2-approx
  • 提示: v ( A ) = ∑ i ∈ A v i ,   v ( B ) = v m a x = = > v ( A ) + v ( B ) ≥ O P T v(A)=\sum_{i∈A}v_i,\space v(B)=v_{max}==>v(A)+v(B)\ge OPT v(A)=iAvi, v(B)=vmax==>v(A)+v(B)OPT
  • slide P.31
  1. 背包问题的贪心算法是可以推导出一个单调的分配规则, 即竞价者仍然是出价越高或单位出价越高越容易得到更高的效用==>由Myerson’s Lemma可以给出付款规则 p p p使得 ( x , p ) (x,p) (x,p)DSIC
  • 单调的情况下意味着付款规则对于每个竞价者都存在一个critic bid使得高于该报价获胜, 低于该报价是失败的

Lecture 4

  1. 上集回顾
  • [ ∑ i = 1 n p i ( v ⃗ ) ] = E v ⃗ [ ∑ i = 1 n ϕ i ( v ⃗ ) X i ( v ⃗ ) ] [\sum_{i=1}^{n}p_i(\vec v)] = E_{\vec v}[\sum_{i=1}^{n}\phi_i(\vec v)X_i(\vec v)] [i=1npi(v )]=Ev [i=1nϕi(v )Xi(v )]
  • EXPECTED REVENUE = EXPECTED VIRTUAL WELFARE
  • ϕ i ( v i ) = v i − 1 − F i ( v i ) f i ( v i ) \phi_i(v_i) = v_i - \frac{1-F_i(v_i)}{f_i(v_i)} ϕi(vi)=vifi(vi)1Fi(vi) 严格单调增
  • 要求分布 F i F_i Fi是regular的
  • 如果virtual welfare最大化分配规则是单调的, 则它是最优的
  • 应用: 单品拍卖, iid分布的regular竞拍者, 最优拍卖为Vickrey+reserve_price( ϕ − 1 ( 0 ) \phi^{-1}(0) ϕ1(0))
  • 举例: 若两个竞拍者A的分布为Uniform[0,2], B的分布为Uniform[0,3], A真实出价为2, B真实出价为2.4, 则算下来A的virtual revenue为2, B为1.8. 因此A赢得了拍卖, 付款为1.9, 因为A只要报出1.9就仍然可以赢B, 所以对于A来说Allocation Function在1.9处发生跳跃, 左侧面积刚好为1.9, 即为critic bid
    • 因此myerson理论在实际中存在缺陷, 出价低的人反而赢得了竞拍, 且付款额是一个很奇怪的数字
    • 因此我们希望找到一个更简单, 更实际, 更鲁棒的拍卖
    • 引出计算机领域的一个拍卖, 即牺牲一些社会福利, 如只要80%的福利, 但是我可以取得接近最优解的结果
  1. Prophet Inequality 先验不等式
  • 一个有 n n n轮的博弈
  • 在第 i i i阶段, 会提供一个价值为 π i \pi_i πi的奖励 π i ∼ G i \pi_i \sim G_i πiGi, 其中分布 G i G_i Gi是已知的(且各个阶段的prize相互独立)
  • 玩家在看到 π i \pi_i πi后, 可以接受(则博弈停止)或者继续, 最终要最大化自己的收益
  • 定理[Samel-Cahn’ 84]: 存在一种策略, 使得期望收益不小于 1 2 E π ⃗ [ max ⁡ i π i ] \frac{1}{2}E_{\vec \pi}[\max_i\pi_i] 21Eπ [maxiπi], 即至少为可能最优解的一半, 只要使用一个阈值策略, 即接受 π i \pi_i πi一旦 π i ≥ t \pi_i\ge t πit, t t t为给定的阈值
    • 证明:
      • 定义符号 z + = max ⁡ { 0 , z } z^{+}=\max\{0,z\} z+=max{0,z}, 考虑一个阈值 t t t, 使得 q ( t ) = P r ( π i < t , ∀ i ) q(t)=Pr(\pi_i\lt t, \forall i) q(t)=Pr(πi<t,i)
      • E [ E[ E[ t t t为阈值的收益] = t ( 1 − q ( t ) ) + ∑ i = 1 n E π i [ π i − t ∣ π i ≥ t , π j < t , ∀ j < i ] ⋅ P r ( π i ≥ t ) ⋅ P r ( π j < t , ∀ j < i ) ≥ t ( 1 − q ( t ) ) + ∑ i = 1 n E π i [ π i − t ∣ π i ≥ t ] ⋅ P r ( π i ≥ t ) ⋅ P r ( π j < t , ∀ j ≠ i ) = t ( 1 − q ( t ) ) + ∑ i = 1 n E π i [ ( π i − t ) + ] ⋅ P r ( π j < t , ∀ j ≠ i ) ≥ t ( 1 − q ( t ) ) + ∑ i = 1 n E π i [ ( π i − t ) + ] ⋅ q ( t ) =t(1-q(t))+\sum_{i=1}^{n}E_{\pi_i}[\pi_i-t|\pi_i\ge t, \pi_j\lt t, \forall j<i]·Pr(\pi_i\ge t)·Pr(\pi_j\lt t, \forall j<i)\\ \ge t(1-q(t))+\sum_{i=1}^{n}E_{\pi_i}[\pi_i-t|\pi_i\ge t]·Pr(\pi_i\ge t)·Pr(\pi_j\lt t, \forall j\ne i)\\ =t(1-q(t))+\sum_{i=1}^{n}E_{\pi_i}[(\pi_i-t)^{+}]·Pr(\pi_j\lt t, \forall j\ne i)\\ \ge t(1-q(t))+\sum_{i=1}^{n}E_{\pi_i}[(\pi_i-t)^{+}]·q(t) =t(1q(t))+i=1nEπi[πitπit,πj<t,j<i]Pr(πit)Pr(πj<t,j<i)t(1q(t))+i=1nEπi[πitπit]Pr(πit)Pr(πj<t,j=i)=t(1q(t))+i=1nEπi[(πit)+]Pr(πj<t,j=i)t(1q(t))+i=1nEπi[(πit)+]q(t)
      • E [ max ⁡ i π i ] = E [ t + max ⁡ i ( π i − t ) ] = t + E [ max ⁡ i ( π i − t ) ] ≤ t + E [ max ⁡ i ( π i − t ) + ] ≤ t + ∑ i = 1 n E [ ( π i − t ) + ] E[\max_i \pi_i]=E[t+\max_i(\pi_i-t)]=t+E[\max_i(\pi_i-t)]\le t+E[\max_i(\pi_i-t)^{+}]\le t+\sum_{i=1}^{n}E[(\pi_i-t)^{+}] E[maxiπi]=E[t+maxi(πit)]=t+E[maxi(πit)]t+E[maxi(πit)+]t+i=1nE[(πit)+]
      • 对比①②两种不同方式的放缩结果, 设置 t t t使得 q ( t ) = 1 2 q(t)=\frac{1}{2} q(t)=21就可以证明定理成立
  1. 应用:
  • 单品拍卖
  • regular的分布 F 1 , F 2 , . . . , F n F_1,F_2,...,F_n F1,F2,...,Fn
  • 考虑 π i = ϕ i ( v i ) + \pi_i=\phi_i(v_i)^{+} πi=ϕi(vi)+作为第 i i i轮的奖励
  • 由Myerson的理论知最优期望收益 = E v ⃗ [ ∑ i ϕ i ( v i ) X i ∗ ( v ⃗ ) ] = E v ⃗ [ max ⁡ i ϕ i ( v i ) + ] =E_{\vec v}[\sum_{i}\phi_i(v_i)X_i^{*}(\vec v)]=E_{\vec v}[\max_i \phi_i(v_i)^{+}] =Ev [iϕi(vi)Xi(v )]=Ev [maxiϕi(vi)+]
  • Simple action: 目前并没有一个确切的定义说什么样的拍卖机制是相对simaple的, 但我们可以相信这种拍卖机制比Myerson的virtual welfare拍卖要相对simple
    • 选择 t t t使得 P r ( max ⁡ ϕ i ( v i ) + ≥ t ) = 1 2 Pr(\max \phi_i(v_i)^{+}\ge t)=\frac{1}{2} Pr(maxϕi(vi)+t)=21
    • 将奖励商品授予一个 ϕ i ( v i ) > t \phi_i(v_i)\gt t ϕi(vi)>t的竞拍者(if any, 有virtual value都大于 t t t的就随便给了)
    • Observation about the P.I.
      • 假设 π i ≥ t \pi_i\ge t πit对于多个 i i i, 确保满足即使策略会选择最差的那个竞拍者
      • by P.I. 这个Simple action期望的virtual surplus不小于实际最优解的一半
    • Implement: 实现这个拍卖
      • ① 设置reserve price r i = ϕ i ( t ) r_i=\phi_i(t) ri=ϕi(t), 来筛去那些低于阈值的竞拍者
      • ② 将商品给到剩余竞拍者中出价最高的那个人即可(if any)
      • ③ 最后按照次价付款即可
      • 这个机制唯一不好的地方就是存在价格歧视
    • 进一步地, 如果 n n n个分布 F 1 , F 2 , . . . , F n F_1,F_2,...,F_n F1,F2,...,Fn对于卖方来说未知, 这称为prior-independent auction, 本节不讨论
  1. 定理[Bulow-Kemperer](Slide P.48): 单品拍卖, n个 iid regular的分布 F F F, 有EXPECTED REVENUE OF VICKREY(有 n + 1 n+1 n+1个人的拍卖) >= EXPECTED OPT UNDER F(有 n n n个人的拍卖)
  • 即有 n + 1 n+1 n+1个人的二价拍卖最有期望收益不小于 n n n个人的最优解, 且VA的收益为 ϕ i ( 0 ) \phi_i(0) ϕi(0)
    • Slide的表述: That is, O P T F OPT_F OPTF is the Vickrey auction with the monopoly reserve price ϕ i ( 0 ) \phi_i(0) ϕi(0), where ϕ \phi ϕ is the virtual valuation function of F F F
  • 推论: 额外的竞争比最优拍卖格式更加重要
  • 证明:
    • 定义拍卖 A A A(with n + 1 n+1 n+1 个竞拍者)
      • ① 现在模拟OPT在 n n n个bidders中: 1,2,…,n
      • ② 如果在①中没有卖出去, 将商品免费送给第 n + 1 n+1 n+1个bidder,
    • Note: A A A的期望收益与OPT相同(有 n n n个bidders)
    • Note: A A A总是会分配商品
    • Note: A A A是一个DSIC的拍卖机制
    • 作为结束, 声称Vickrey最大化了期望收益在所有的拍卖中, 并且能够总是卖出商品
    • E v ⃗ [ ∑ p i ( v ⃗ ) ] = E v ⃗ [ ∑ i ϕ i ( v i ) X i ( v ⃗ ) ] ≤ E v ⃗ [ max ⁡ i ϕ i ( v i ) ] E_{\vec v}[\sum p_i(\vec v)]=E_{\vec v}[\sum_i \phi_i(v_i)X_i(\vec v)]\le E_{\vec v}[\max_i \phi_i(v_i)] Ev [pi(v )]=Ev [iϕi(vi)Xi(v )]Ev [maxiϕi(vi)] if always saling,
      • 第一个等号是对 A A A而言: EXPECTED REVENUE=EXPECTED VIRTUAL VALUE
      • 不等式右端其实就是Vickrey
      • ∑ i X i ( v ⃗ ) = 1 , ∀ v ⃗ \sum_i X_i(\vec v)=1, \forall \vec v iXi(v )=1,v
    • 原因: 为了最大化收益使得总是卖出商品, 则分配给竞拍者with最高的 ϕ i ( v i ) \phi_i(v_i) ϕi(vi)
    • Vickrey将商品给到竞拍者with最高的 v i v_i vi
  1. 更一般的多变量机制设计
  • n n n个竞拍者
  • 有限集合 Ω \Omega Ω of outcomes
  • i i i有一个私有的估值 v i ( ω ) v_i(\omega) vi(ω) 对于每个 ω ∈ Ω \omega∈\Omega ωΩ
  • 定理[Vickrey Clarke Graves]: 在每个环境中, 都有一个DSIC surplus-maximizing 机制
    • 这里并不能保证一定有一个多项式时间内能计算出的机制, 即relax了第三点
    • 证明:
      • ① 假设每个人都还是诚实竞价(truthful bids): { b ⃗ i } ∣ 1 n \{\vec b_i\}|_{1}^{n} {b i}1n, 其中 b ⃗ i \vec b_i b i根据 Ω \Omega Ω来索引, 注意这里的每个人的报价已经是要报出一串数, 而非一个数
        • 定义分配规则: X ( b ⃗ ) = arg max ⁡ ω ∈ Ω ∑ i = 1 n b i ( ω ) X(\vec b)=\argmax_{\omega∈\Omega}\sum_{i=1}^{n}b_i(\omega) X(b )=ωΩargmaxi=1nbi(ω)
      • ② 定义付款规则来达到DSIC: 前提要求分配规则是单调的
        • 问题: 单调分配规则的定义并不明确
        • 想法: 经济学上的外部性, 及向竞拍者 i i i要价externality
          • P i ( b ⃗ ) = max ⁡ ω ∈ Ω ∑ j ≠ i b i ( ω ) − ∑ j ≠ i b j ( ω ∗ ) P_i(\vec b)=\max_{\omega∈\Omega}\sum_{j\ne i}b_i(\omega)-\sum_{j\ne i}b_j(\omega^{*}) Pi(b )=maxωΩj=ibi(ω)j=ibj(ω)
          • max ⁡ ω ∈ Ω ∑ j ≠ i b i ( ω ) \max_{\omega∈\Omega}\sum_{j\ne i}b_i(\omega) maxωΩj=ibi(ω)是如果 i i i不在市场里面其他人的surplus是多少
          • ∑ j ≠ i b j ( ω ∗ ) \sum_{j\ne i}b_j(\omega^{*}) j=ibj(ω)是如果 i i i在市场里面其他人的surplus是多少, 其中 ω ∗ = X ( b ⃗ ) \omega^{*}=X(\vec b) ω=X(b )
          • 即由于 i i i的存在, 其他人的surplus变差了多少, 则 i i i需要付出多少钱
        • 证明这种外部性的想法是正确的: 即证明这种VCG的机制是DSIC的(surplus maximizing)
          • 固定 i , b ⃗ − i i, \vec b_{-i} i,b i, 其中 ω ∗ = X ( b ⃗ ) \omega^{*}=X(\vec b) ω=X(b ), 第 i i i个人的效用 = v i ( ω ) − p i ( b ⃗ ) = [ v i ( ω ) + ∑ j ≠ i b j ( ω ) ] − max ⁡ ω ∈ Ω ∑ j ≠ i b j ( ω ) =v_i(\omega)-p_i(\vec b)=[v_i(\omega)+\sum_{j\ne i}b_j(\omega)]-\max_{\omega∈\Omega}\sum_{j\ne i}b_j(\omega) =vi(ω)pi(b )=[vi(ω)+j=ibj(ω)]maxωΩj=ibj(ω)
          • 注意 max ⁡ ω ∈ Ω ∑ j ≠ i b j ( ω ) \max_{\omega∈\Omega}\sum_{j\ne i}b_j(\omega) maxωΩj=ibj(ω)这部分与 b ⃗ i \vec b_i b i是独立的
          • Best case for i i i, 机制挑选 ω ∗ ∈ arg max ⁡ ω ∈ Ω [ v i ( ω ) + ∑ j ≠ i b j ( ω ) ] \omega^{*}∈\argmax_{\omega∈\Omega}[v_i(\omega)+\sum_{j\ne i}b_j(\omega)] ωωΩargmax[vi(ω)+j=ibj(ω)]
          • VCG做了什么? VCG选择 ω ∗ ∈ arg max ⁡ ω ∈ Ω ∑ j = 1 n b j ( ω ) \omega^{*}∈\argmax_{\omega∈\Omega}\sum_{j=1}^{n}b_j(\omega) ωωΩargmaxj=1nbj(ω)
          • 从而推导出bidding b ⃗ i = v ⃗ i \vec b_i=\vec v_i b i=v i导致这个发生, 如果真实报价的话, VCG的选择就是你真实的选择
    • 另一种推论解释:
      • p i ( b ⃗ ) = b i ( ω ∗ ) − ( ∑ j = 1 n b j ( ω ∗ ) − max ⁡ ω ∈ Ω ∑ j ≠ i b j ( ω ) ) p_i(\vec b)=b_i(\omega^{*})-(\sum_{j=1}^{n}b_j(\omega^{*})-\max_{\omega∈\Omega}\sum_{j\ne i}b_j(\omega)) pi(b )=bi(ω)(j=1nbj(ω)maxωΩj=ibj(ω))
      • ∑ j = 1 n b j ( ω ∗ ) \sum_{j=1}^{n}b_j(\omega^{*}) j=1nbj(ω)是有你的社会surplus
      • max ⁡ ω ∈ Ω ∑ j ≠ i b j ( ω ) ) \max_{\omega∈\Omega}\sum_{j\ne i}b_j(\omega)) maxωΩj=ibj(ω))是没有你的社会surplus
      • 类似一价拍卖, 但是最后会给你一些补偿

Lecture 5

  1. 回顾VCG
  • 总是可以找到一个DSIC的社会福利最大化机制
  • 每个人的付款应该是有他和没有他两种情况下, 整个社会surplus的差值
  • VCG举例:
    • Ex1: 单品拍卖
      • 3个bidders, Ω = { \Omega=\{ Ω={allocate to A , B , C } A, B, C\} A,B,C}
      • 分配情况收益是分配给 i i i的效用 v i v_i vi, 其中 i ∈ { A , B , C } i∈\{A,B,C\} i{A,B,C}, 其余情况都是零, 即outcome矩阵是一个对角阵, 对角线上是各个人的valuation
    • Ex2: 双边贸易 Bilateral Trade
      • 一个卖家, 成本 v S v_S vS
      • 一个买家, 估值 v B v_B vB
      • 但是一个中介想要促成交易(但是中介不知道 v S v_S vS v B v_B vB, 当然 v S < v B v_S<v_B vS<vB, 否则不应当去促成交易), 由VCG payment来看应当多少钱使得他们都会真实报价?
      • 解决方案: Ω = { \Omega=\{ Ω={成交, 不成交 } \} }, outcome矩阵是, 不成交买卖双方都是零, 成交的话卖家为 − v S -v_S vS, 买家为 v B v_B vB, 但是用VCG要求矩阵的数值非负, 此时我们将outcome矩阵平移, 即将卖家这行都加上 v S v_S vS(注意我们会选择outcome之和最大的那一种 ω \omega ω, 因此将某个参与者的outcome全都加一个数不影响最终的选择), outcome矩阵又变成了和单品拍卖一样的对角矩阵, [ ( 0 , − v S ) , ( 0 , v B ) ] → [ ( v S , 0 ) , ( 0 , v B ) ] [(0,-v_S),(0,v_B)] \rightarrow [(v_S,0),(0,v_B)] [(0,vS),(0,vB)][(vS,0),(0,vB)]
      • VCG付款规则: P S ( v ) = h S ( v B ) − u B ( ω ∗ ) P_S(v)=h_S(v_B)-u_B(\omega^{*}) PS(v)=hS(vB)uB(ω), h S h_S hS是卖家不在时别人的最大值
      • 直观上成交的话应该向卖家收一笔钱, 然后向买家付一笔钱,
      • 注意如果没有成交, VCG应该确保是不付钱 P S ( v ) = h S ( v B ) − u B ( P_S(v)=h_S(v_B)-u_B( PS(v)=hS(vB)uB(不成交 ) = 0 )=0 )=0, 因为 u B ( u_B( uB(不成交 ) = 0 )=0 )=0, 则 则 h_S$应该恒等于0
        • 在上节课里我们看到 h S h_S hS就是 max ⁡ ω ∈ Ω ∑ j ≠ i b i ( ω ) \max_{\omega∈\Omega}\sum_{j\ne i}b_i(\omega) maxωΩj=ibi(ω), 是可以随便取的, 但是后面一项不行与 b i b_i bi独立是不行的
      • 对于买家来说很容易证明是DSIC的, 因为诚实报价最优解, 放低报价不会增加收益
      • VCG付款规则: P B ( v ) = h B ( v S ) − u S ( ω ∗ ) P_B(v)=h_B(v_S)-u_S(\omega^{*}) PB(v)=hB(vS)uS(ω), h B h_B hB是买家不在时别人的最大值
      • 注意如果没有成交, VCG应该确保是不付钱 P B ( v ) = h B ( v S ) − u S ( P_B(v)=h_B(v_S)-u_S( PB(v)=hB(vS)uS(不成交 ) = 0 )=0 )=0, 因为 u S ( u_S( uS(不成交 ) = v S )=v_S )=vS, 则 h B h_B hB应该恒等于 v S v_S vS
      • 郭远方的一个想法: 中介要使得双方的付款都与他们自己的成本或估值是无关的, 因为要让他们诚实报价
    • Ex3: 造桥(公共品)
      • 造桥成本为 C C C
      • 桥造出来对城市中每个人都会有一个效用, 假设有 n n n个玩家, 每个人的效用是 v i v_i vi
      • 直观上应该是当 ∑ i = 1 n v i ≥ C \sum_{i=1}^{n}v_i\ge C i=1nviC时会造桥, 那么政府应当如何向这些人收钱?
      • ① 一种特殊情况: C = 100 C=100 C=100, n = 200 n=200 n=200, v i = 1 v_i=1 vi=1
        • 因为无论有没有某个 i i i, 决策是不会变的(199>100), 因此根据VCG来说是不付钱的
      • ② 一种特殊情况: 将①中的某个 i i i的效用是50, 其余99个人都是1, 那么向这个效用50的应当给他1块钱
      • 用VCG研究这个场景时应当去把政府也作为一个玩家加进来, 造桥的outcome是 − C -C C, 不造是0, 因此在②中应当是向这个效用50的人付款1元(有他就造, 其余人总效用为-100+99, 没有他就不造, 其余人效用为0, 发现效用变好了, 所以要付给他1块钱)
    • Ex4: 在一个网络图中买一条路径
      • 有向图中的每条边是一个player, 它会有一个cost, 起始点为 s s s, t t t
      • VCG的思想就是有这条边和没有这条边有多大路径增长, 以此来对每条边付钱
      • 以下面这个图为例: V = { A , B , C , D , E , F } V=\{A,B,C,D,E,F\} V={A,B,C,D,E,F}, E = { ( A , B , 3 ) , ( B , D , 2 ) , ( D , F , 2 ) , ( A , C , 2 ) , ( C , E , 3 ) , ( E , F , 1 ) , ( B , E , 1 ) , ( C , F , 5 ) } E=\{(A,B,3),(B,D,2),(D,F,2),(A,C,2),(C,E,3),(E,F,1),(B,E,1),(C,F,5)\} E={(A,B,3),(B,D,2),(D,F,2),(A,C,2),(C,E,3),(E,F,1),(B,E,1),(C,F,5)}
        • 最优解 A B E F ABEF ABEF, 成本为5
        • 当缺少 A B AB AB时变成 A C E F ACEF ACEF, 成本为6, 因此付给 A B AB AB 6 − 2 = 4 6-2=4 62=4, 因为 A B E F ABEF ABEF中要把 A B AB AB扔了
        • 同理给 B E BE BE的付款为2, 给 E F EF EF的付款为3
  1. 介绍一些VCG失败的场景
  • Ex1
    • n n n个bidders
    • M = { 1 , 2 , . . . , m } M=\{1,2,...,m\} M={1,2,...,m}是物品集合
    • Ω = { ( S 1 , S 2 , . . . , S n ) } \Omega =\{(S_1,S_2,...,S_n)\} Ω={(S1,S2,...,Sn)}为outcome, 注意不一定所有的物品都会被卖出去, S i S_i Si包含于 M M M代表第 i i i个人的bundle
    • i i i个bidder有一个私有的估值 v i ( S ) v_i(S) vi(S)对于每个bundle S S S包含于 M M M
      • v i ( ∅ ) = 0 v_i(\emptyset)=0 vi()=0
      • v i ( S ) ≥ v i ( T ) v_i(S)\ge v_i(T) vi(S)vi(T) T T T包含于 S S S
    • surplus目标函数: ∑ i = 1 n v i ( S i ) \sum_{i=1}^{n}v_i(S_i) i=1nvi(Si)
    • VCG无法计算这个问题:
      • ① 该问题求解是NP-hard, 难以求解目标函数最优解
      • ② 难以收集bid, 因为当有 m m m个物品时每个bidder需要提供 2 m 2^m 2m个报价
        • 因此引出ascending auctions: learn info on “need-to-know” basis, indirect auction
      • ③ 即时①②都不是问题, VCG可能有一个坏的收益属性
        • 举例说明: 比如只有两个物品 { A , B } \{A,B\} {A,B}, 两个bidder
        • bidder 1: v 1 ( A B ) = 1 v_1(AB)=1 v1(AB)=1, 其余为0
        • bidder 2: v 2 ( A B ) = v 2 ( A ) = 1 v_2(AB)=v_2(A)=1 v2(AB)=v2(A)=1, 其余为0
        • 显然VCG revenue为1, 不管踢掉哪个bidder, outcome差都是1
        • 假设现在加入一个bidder 3: v 3 ( A B ) = v 3 ( B ) = 1 v_3(AB)=v_3(B)=1 v3(AB)=v3(B)=1, 其余为0, 此时会把商品分给2和3, 但是此时revenue掉到了0, 多出一个人反而使得revenue减少了
        • 结论: VCG很容易使得bidder间发生勾结
      • ④ Relaxing DSIC 使得能导致一个新的gaming possibilities
        • Ex[Cromton/Schwartz '02] 频谱拍卖: 如5G的频段拍卖
          • #378 Rochester, USWest and Mcleod
          • 一种简单的解决方案: 本来我有几百个东西一起卖, 现在我分下来卖, 转化成单品拍卖
            • 注意拍卖顺序会对结果产生影响的
            • ① 单品拍卖总是生效吗?
              • A. 若商品是(mostly)替代品, 则大概有 v ( A B ) ≤ v ( A ) + v ( B ) v(AB)\le v(A)+v(B) v(AB)v(A)+v(B), 比如同一个地区的5G执照, 这种情况下分开卖一般不会影响revenue
              • B. 若商品是互补品, 则会有 v ( A B ) ≥ v ( A ) + v ( B ) v(AB)\ge v(A)+v(B) v(AB)v(A)+v(B), 比如不同地区的5G执照, 这种情况下就很有意思了
              • 错误1: 序列式的拍卖 sequentially auction
                • 一种简单的案例:
                  • 相同的商品, 每个bidder只想要其中一个
                  • 问题: 不是DSIC的, 需要猜测拍卖价格, 比如估值最高者未必会在第一轮进场, 因为如果估值第二高者第一轮进场, 最高者第二轮进场就可以至多以第三高价成交
                  • Ex: Swiss 2000 March ① 28MHZ block (121 mil) ② 28MHZ block (134 mil) ③ 56MHZ block (55 mil) <-- double bid
              • 错误2: 密封式拍卖 sealed auction
                • Ex: NewZealand 1990 roughly identical goods, 一个bidder可能会要多个商品
                  • 使用同时的二价密封拍卖, 即bidder要同时提交所有商品的竞价
                  • 对于bidders来说很难来玩这个博弈, 新西兰政府预计能收到250mil, 但是结果只收到了36m
                  • 有一场, 第一名出了十万, 第二名出了6块, 结果第一名只需要付出6块就可以拿到商品
                  • 一种解决方案是不要次价拍卖, 就用一价拍卖来搞, 但是仍然会有一些问题
  1. 解决上面频谱拍卖的目前一个解决方案: Simultaneous ascending auction (SAA)
  • 每一轮, 每个bidder可以对任何一个商品集合的子集进行报价
  • 最高报价的bidder和他的bid将被展示
  • 当某一轮没有人再出价, 结束拍卖
  • 行动规则: roughly, number of items you are bidding on only drops with time
  • Big win: price discovery
  • 举个例子: 2个相同商品, 3个bidders, 其实本质上大家都会在较低的那个商品上竞价, 两个商品会稳步上升, 直到超过第三名的估值
    • allows mid-course corrections: 允许中间修正
    • fixes miscoordination with smaller goods: 修正竞价低的商品的不协调性
    • minor merit: valuation discovery
  • 总体来说, SAA运行的还不错, 现在美国政府基本都按照SAA来竞拍
    • 接近最优的剩余(near-optimal surplus): 事实上其实很难评价是否接近最优, 甚至最优是什么都难以有定论, 不过是可以通过一些现象来评价:
      • no resale: 没有发生转卖
      • similar price: 竞拍价格类似
      • bidders get closed areas: bidder都拿到了离他们较近的区域
  • 问题:
    • ① demand reduction
      • 2个相同商品, 2个竞拍者(好像只卖出一个)
      • v 1 ( 1 ) = 10 v_1(1)=10 v1(1)=10, v 1 ( 2 ) = 20 v_1(2)=20 v1(2)=20, v 2 ( 1 ) = v 2 ( 2 ) = 8 v_2(1)=v_2(2)=8 v2(1)=v2(2)=8, VCG显然会把两个商品都给到bidder 1, MAX Surplus为20, VCG revenue为8
      • SAA的情况下bidder 2不会drop out除非both prices都超过了8
        • 于是bidder 1会付16块钱for both
        • better to target 1 good → \rightarrow both sold at price 0
        • 于是两个人就不抢了, 分别在两个商品上bid 0
    • ② 暴露出的问题: Exposure problems (when goods are conplements)
      • Example: 两个商品
        • v 1 ( A B ) = 100 v_1(AB)=100 v1(AB)=100, 其余为零
        • v 2 ( A B ) = v 2 ( A ) = v ( B ) = 75 v_2(AB)=v_2(A)=v_(B)=75 v2(AB)=v2(A)=v(B)=75
        • Max Surplus = 100 =100 =100, VCG revenue = 75 =75 =75
        • SAA: bidder 1 担心输, 所以会可能超过估值报价

Lecture 6

  1. Problem Set 1 解析
  • 第一题: 在这里插入图片描述
    • (a): 本质只要证明每个人出价是 ( 1 − 1 n ) v i (1-\frac{1}{n})v_i (1n1)vi是一个纳什均衡;
      • bidder i i i value v i v_i vi 其他bidders的bidding策略是 ( 1 − 1 n ) v j (1-\frac{1}{n})v_j (1n1)vj(对于bidder j j j)
      • E v ⃗ − i [ E_{\vec v_{-i}}[ Ev i[utililty that i i i bidding z ] = ( v i − z ) Pr ⁡ [ i z]=(v_i-z)\Pr[i z]=(viz)Pr[i wins ] = ( v i − z ) Pr ⁡ [ z > ( 1 − 1 n ) v j ] = ( v i − z ) ∏ j ≠ i Pr ⁡ [ v j < z 1 − 1 n ] = ( v i − z ) ( z 1 − 1 n − 1 ) n − 1 ]=(v_i-z)\Pr[z>(1-\frac{1}{n})v_j]=(v_i-z)\prod _{j\ne i}\Pr[v_j<\frac{z}{1-\frac{1}{n}}]=(v_i-z)(\frac{z}{1-\frac{1}{n-1}})^{n-1} ]=(viz)Pr[z>(1n1)vj]=(viz)j=iPr[vj<1n1z]=(viz)(1n11z)n1
      • 显然当 z = ( 1 − 1 n ) = v i z=(1-\frac{1}{n})=v_i z=(1n1)=vi是取到最大值, 求导或用不等式皆可;
    • (b): 如果所有bidders的values是iid服从分布 F F F, 则 b i ( v i ) = E [ max ⁡ j ≠ i ∣ v i ≥ v j   ∀ j ] b_i(v_i)=E[\max_{j\ne i}|v_i\ge v_j \space \forall j] bi(vi)=E[maxj=ivivj j]
      • 假设bidder i i i 的bid是 b i ( z ) b_i(z) bi(z), 有 E [ E[ E[utility of bidding b i ( z ) ] = ( v i − b i ( z ) ) Pr ⁡ [ b i ( z ) > b j ( v j )   ∀ j ≠ i ] = ( v i − b i ( z ) ) F n − 1 ( z ) b_i(z)]=(v_i-b_i(z))\Pr[b_i(z)>b_j(v_j)\space \forall j\ne i]=(v_i-b_i(z))F^{n-1}(z) bi(z)]=(vibi(z))Pr[bi(z)>bj(vj) j=i]=(vibi(z))Fn1(z)
      • 注意到 b i ( z ) = E [ max ⁡ j ≠ i v j ∣ z ≥ v j   ∀ j ] = ∫ 0 z [ 1 − ( F ( t ) F ( z ) ) n − 1 ] d t = 1 F n − 1 ( z ) ∫ 0 z [ F n − 1 ( z ) − F n −