【学习笔记】pytorch分布式


张量并行与 megtron-lm 及 accelerate 配置

https://www.bilibili.com/video/BV1TsWoe4E22

https://arxiv.org/abs/1909.08053

  • megtron-lm: 顾名思义针对 transformer 来做的优化
    • 是 mp(论文题目),其实更多是tp(Tensor 张量内部做split)
    • Transformer(intra layer parallel)
      • mlp
      • mha
      • embedding (input: wte, output: lm_head)
  • 单卡做基线,没有通信的开销。存在划分,必然就存在通信。
  • 集成进 accelerate
    • accelerate 的几个 backends
      • deepspeed
      • fsdp
      • megtron-lm
    • https://huggingface.co/docs/accelerate/usage_guides/megatron_lm

mlp

Y = GeLU ( X ( b ℓ ) , k A k , k ′ ) ∈ R ( b ℓ ) , k ′ Y=\text{GeLU}(X_{(b\ell),k}A_{k,k'})\in \mathbb R^{(b\ell),k'} Y=GeLU(X(b),kAk,k)R(b),k

对于矩阵 A 的分块方式

  • 行分快
    • X = [ X 1 , X 2 ] , A = [ A 1 A 2 ] X=\begin{bmatrix}X_1,X_2\end{bmatrix},A=\begin{bmatrix}A_1\\A_2\end{bmatrix} X=[X1,X2],A=[A1A2]
    • Y = GeLU ( X A ) = GeLU ( X 1 A 1 + X 2 A 2 ) Y=\text{GeLU}(XA)=\text{GeLU}(X_1A_1+X_2A_2) Y=GeLU(XA)=GeLU(X1A1+X2A2)
    • 有两点
      • GeLU 的非线性导致 GeLU ( X 1 A 1 + X 2 A 2 ) ≠ GeLU ( X 1 A 1 ) + GeLU ( X 2 A 2 ) \text{GeLU}(X_1A_1+X_2A_2)\neq \text{GeLU}(X_1A_1)+\text{GeLU}(X_2A_2) GeLU(X1A1+X2A2)=GeLU(X1A1)+GeLU(X2A2)
      • X i A i ∈ R ( b ℓ ) , k ′ X_iA_i\in\mathbb R^{(b\ell),k'} XiAiR(b),k
  • 列分快
    • A = [ A 1 , A 2 ] A=\begin{bmatrix}A_1,A_2\end{bmatrix} A=[A1,A2]
    • Y = GeLU ( X A ) = GeLU ( X [ A 1 , A 2 ] ) = [ GeLU ( X A 1 ) , GeLU ( X A 2 ) ] Y=\text{GeLU}(XA)=\text{GeLU}(X\begin{bmatrix}A_1,A_2\end{bmatrix})=[\text{GeLU}(XA_1),\text{GeLU}(XA_2)] Y=GeLU(XA)=GeLU(X[A1,A2])=[GeLU(XA1),GeLU(XA2)]
      • X A i ∈ R b ℓ , k ′ / 2 XA_i\in \mathbb R^{b\ell,k'/2} XAiRb,k/2
    • 如果不同的 splits 放在不同的卡上,不同的卡需要维护全部的数据 X X X(数据未进行分块)

Z = GeLU ( X A ) B Z=\text{GeLU}(XA)B Z=GeLU(XA)B

对于矩阵 B 自然进行行分块:

  • B = [ B 1 B 2 ] B=\begin{bmatrix}B_1\\B_2\end{bmatrix} B=[B1B2]

Z = GeLU ( X A ) B = [ GeLU ( X A 1 ) , GeLU ( X A 2 ) ] [ B 1 B 2 ] = GeLU ( X A 1 ) B 1 + GeLU ( X A 2 ) B 2 \begin{split} Z=&\text{GeLU}(XA)B\\ =&\left[\text{GeLU}(XA_1),\text{GeLU}(XA_2)\right]\begin{bmatrix}B_1\\B_2\end{bmatrix}\\ =&\text{GeLU}(XA_1)B_1 + \text{GeLU}(XA_2)B_2 \end{split} Z===GeLU(XA)B[GeLU(XA1),GeLU(XA2)][B1B2]GeLU(XA1)B1+GeLU(XA2)B2

  • 最后对两张卡计算结果的加和是一种 all-reduce 的过程

关于all reduce可参考https://zhuanlan.zhihu.com/p/469942194,本质上是一个优化节点数据通信的算法,实现是比较容易的,阿里巴巴的ACCL

mha

  • 多头自注意力按照 num heads ( h h h) 对 Q,K,V 三个 projection matrix 按列拆分 ( ( k , k ) → ( k , k / h ) (k,k)\rightarrow (k,k/h) (k,k)(k,k/h) )
    • 对于 O O O:按行拆分
  • 每个头的输出为 Y i = softmax ( ( X Q i ) ( X K i ) T d k ) V i ∈ R ℓ , k / h Y_i=\text{softmax}\left(\frac{(XQ_i)(XK_i)^T}{\sqrt{d_k}}\right)V_i\in \mathbb R^{\ell,k/h} Yi=softmax(dk (XQi)(XKi)T)ViR,k/h

[ Y 1 , Y 2 ] [ B 1 B 2 ] = Y 1 B 1 + Y 2 B 2 [Y_1,Y_2]\begin{bmatrix}B_1\\B_2\end{bmatrix}=Y_1B_1+Y_2B_2 [Y1,Y2][B1B2]=Y1B1+Y2B2

emb

  • 如果词表数量是64000,嵌入式表示维度为5120,类型采用32 位精度浮点数,那么整层参数需要的显存大约为64000 × 5120 × 4 /1024/1024 = 1250MB,反向梯度同样需要1250MB,仅仅存储就需要将近2.5GB。
  • wte: E H × v = [ E 1 , E 2 ] E_{H\times v}=[E_1,E_2] EH×v=[E1,E2]
    • column-wise(v,vocab-size dimension)
    • 1-50000: 1-25000, 25001-50000
    • all-reduce (weight/tensor sum)
  • lm head: [ Y 1 , Y 2 ] = [ X E 1 , X E 2 ] [Y_1,Y_2]=[XE_1,XE_2] [Y1,Y2]=[XE1,XE2]
    • all-gather: (weight/tensor concat)
      • 存在通信的问题: ( b × s ) × v (b\times s)\times v (b×s)×v v v v 万级别的)
    • softmax:logits => probs
    • X E i ∈ R ( b × s ) v 2 XE_i\in\mathbb R^{(b\times s)\frac v2} XEiR(b×s)2v
    • rowsum ( exp ⁡ ( X E 1 ) ) \text{rowsum}(\exp(XE_1)) rowsum(exp(XE1)), 长度为 b s bs bs 的列向量,同理长度为 b s bs bs 的列向量,两个列向量 all-reduce 继续得到长度为 bs 的列向量

在这里插入图片描述

  • [0, 1, 25000, 25001]: input,不进行拆分
    • 索引 E1 => 4*hidden_size,第3-4行为全0;
    • 索引 E2 => 4*hidden_size,第1-2行为全0;
    • 两个结果通过 all-reduce 加一起;
import torch
import torch.nn.functional as F

torch.manual_seed(42)

A = torch.randn(5, 8)  # 5行12列的随机矩阵
"""
tensor([[ 1.9269,  1.4873,  0.9007, -2.1055,  0.6784, -1.2345, -0.0431, -1.6047],
        [-0.7521,  1.6487, -0.3925, -1.4036, -0.7279, -0.5594, -0.7688,  0.7624],
        [ 1.6423, -0.1596, -0.4974,  0.4396, -0.7581,  1.0783,  0.8008,  1.6806],
        [ 0.0349,  0.3211,  1.5736, -0.8455,  1.3123,  0.6872, -1.0892, -0.3553],
        [-1.4181,  0.8963,  0.0499,  2.2667,  1.1790, -0.4345, -1.3864, -1.2862]])
"""

A_1, A_2 = A.split(4, dim=1)

A_1
"""
tensor([[ 1.9269,  1.4873,  0.9007, -2.1055],
        [-0.7521,  1.6487, -0.3925, -1.4036],
        [ 1.6423, -0.1596, -0.4974,  0.4396],
        [ 0.0349,  0.3211,  1.5736, -0.8455],
        [-1.4181,  0.8963,  0.0499,  2.2667]])
"""

A_2
"""
tensor([[ 0.6784, -1.2345, -0.0431, -1.6047],
        [-0.7279, -0.5594, -0.7688,  0.7624],
        [-0.7581,  1.0783,  0.8008,  1.6806],
        [ 1.3123,  0.6872, -1.0892, -0.3553],
        [ 1.1790, -0.4345, -1.3864, -1.2862]])
"""

exp_A_1 = torch.exp(A_1)
exp_A_2 = torch.exp(A_2)

rowsum_exp_A_1 = torch.sum(exp_A_1, dim=1)
rowsum_exp_A_2 = torch.sum(exp_A_2, dim=1)

# all-reduce
rowsum = rowsum_exp_A_1 + rowsum_exp_A_2

rowsum.view(-1, 1)
"""
tensor([[17.2970],
        [10.2543],
        [19.1843],
        [14.4078],
        [17.8164]])
"""

exp_A_1 / rowsum.view(-1, 1)
"""
tensor([[0.3971, 0.2558, 0.1423, 0.0070],
        [0.0460, 0.5071, 0.0659, 0.0240],
        [0.2693, 0.0444, 0.0317, 0.0809],
        [0.0719, 0.0957, 0.3348, 0.0298],
        [0.0136, 0.1375, 0.0590, 0.5415]])
"""

exp_A_2 / rowsum.view(-1, 1)
"""
tensor([[0.1139, 0.0168, 0.0554, 0.0116],
        [0.0471, 0.0557, 0.0452, 0.2090],
        [0.0244, 0.1532, 0.1161, 0.2799],
        [0.2578, 0.1380, 0.0234, 0.0487],
        [0.1825, 0.0363, 0.0140, 0.0155]])
"""

torch.concat([exp_A_1 / rowsum.view(-1, 1), exp_A_2 / rowsum.view(-1, 1)], dim=1)
torch.allclose(softmax, torch.concat([exp_A_1 / rowsum.view(-1, 1), exp_A_2 / rowsum.view(-1, 1)], dim=1)) # True

accelerate megtron-lm config

https://huggingface.co/docs/accelerate/usage_guides/megatron_lm

在这里插入图片描述

  • Sequence Parallelism (SP): Reduces memory footprint without any additional communication.
    • https://arxiv.org/pdf/2205.05198
      • (Megatron 3)
    • Only applicable when using TP.
    • It reduces activation memory required as it prevents the same copies to be on the tensor parallel ranks post all-reduce by replacing then with reduce-scatter and no-op operation would be replaced by all-gather.
    • https://zhuanlan.zhihu.com/p/522198082
    • LayerNorm和Dropout的计算被平摊到了各个设备上,减少了计算资源的浪费;
    • LayerNorm和Dropout所产生的激活值也被平摊到了各个设备上,进一步降低了显存开销。

存在划分,必然就存在通信。在 Megatron1, 2 中,Transformer核的TP通信是由正向两个Allreduce以及后向两个Allreduce组成的。Megatron 3由于对sequence维度进行了划分,Allreduce在这里已经不合适了。为了收集在各个设备上的sequence parallel所产生的结果,需要插入Allgather算子;而为了使得TP所产生的结果可以传入sequence parallel层,需要插入reduce-scatter算子。在下图中,
所代表的就是前向Allgather,反向reduce scatter,
则是相反的操作。这么一来,我们可以清楚地看到,Megatron-3中,一共有4个Allgather和4个reduce-scatter算子。乍一看,通信的操作比Megatron-1 2都多得多,但其实不然。因为一般而言,一个Allreduce其实就相当于1个Reduce-scatter和1个Allgather,所以他们的总通信量是一样的。

如何配置?

./.cache/huggingface/accelerate/default_config.yaml里修改。使用命令workspace accelerate launch启动交互式配置。


[Pytorch 分布式] ring-allreduce 算法(scatter-reduce、allgather)以及 FSDP

video: https://www.bilibili.com/video/BV1biLHzAEzv

code: https://github.com/chunhuizhang/pytorch_distribute_tutorials/blob/main/tutorials/3D-parallel/ring-allreduce.ipynb

之前探讨了DP、PP,这个要探讨SP的问题

Preliminary:FSDP(Fully Shared DP)

  • all-gather/reduce-scatter
from IPython.display import Image
  • N 张卡组成一个 ring 环,计算步数,2(N-1)
    • scatter-reduce: (N-1),非标准 nccl
    • all-gather: (N-1)
  • 3张卡,长度为6的向量加和为例;
    • input (each gpu model gradients):
      • [a0, a1 | a2, a3 | a4, a5] = [A0 | A1 | A2]
      • [b0, b1 | b2, b3 | b4, b5] = [B0 | B1 | B2]
      • [c0, c1 | c2, c3 | c4, c5] = [C0 | C1 | C2]
    • output (sync model gradients across gpus):
      • [a0+b0+c0, a1+b1+c1, a2+b2+c2, a3+b3+c3, a4+b4+c4, a5+b5+c5]
      • [A0 + B0 + C0 | A1 + B1 + C1 | A2 + B2 + C2]

这里要做的一个事情就是,三张卡上有三份不同的数据,现在要把它们加和起来并结算到某一张卡上去。

torch scatter reduce

  • https://pytorch.org/docs/stable/generated/torch.Tensor.scatter_reduce_.html
import torch

src = torch.tensor([1., 2., 3., 4., 5., 6.])
index = torch.tensor([0, 1, 0, 1, 2, 1])
input = torch.tensor([1., 2., 3., 4.])
input.scatter_reduce(0, index, src, reduce="sum", include_self=True)

1+(1+3), 2+(2+4+6), 3+(5), 4
# tensor([5, 14, 8, 4])

src = torch.tensor([1., 2., 3., 4., 5., 6.])
index = torch.tensor([0, 1, 0, 1, 2, 1])
input = torch.tensor([1., 2., 3., 4.])
input.scatter_reduce(0, index, src, reduce="mean", include_self=True)

(1+(1+3))/3, (2+(2+4+6))/4, (3+(5))/2, 4
# tensor([1.667, 3.5, 4.0, 4])

上面的例子中,source是src = [1,2,3,4,5,6],然后我们要把这些数据按照index中的索引进行scatter,scatter到input中去,然后做reduce操作(比如求和)

比如0这个位置要进来两个数据(1 和 3),也就是(1+1+3),其他位置是一样的,input里原先的数据也是要算进去的。

phase1: scatter reduce

减少通信量;先分块,以降低通信量,下面介绍的是

  • [a0, a1 | a2, a3 | a4, a5] = [A0 | A1 | A2]
  • [b0, b1 | b2, b3 | b4, b5] = [B0 | B1 | B2]
  • [c0, c1 | c2, c3 | c4, c5] = [C0 | C1 | C2]
  • scatter:data chunks,reduce:规约(降维)
    • nccl 是 reduce-scatter
    • 下面两步走是ring-allreduce的一算法
  • step1
    • GPU0 =>(A2) GPU1 =>(B0) GPU2 =>(C1) GPU0
      • GPU0: A1 + C1, [A0, A1+C1, A2]
      • GPU1: B2 + A2, [B0, B1, B2+A2]
      • GPU2: C0 + B0, [C0+B0, C1, C2]
  • step2
    • GPU0 =>(A1+C1) GPU1 =>(B2+A2) GPU2 =>(C0+B0) GPU0
      • GPU0: [C0+B0+A0, A1+C1, A2]
      • GPU1: [B0, A1+C1+B1, B2+A2]
      • GPU2: [C0+B0, C1, B2+A2+C2]

上面就是第一轮一个环状的传数据,第二轮也是环状传数据三张卡,第一轮只传了一个块,第二轮就两个块,两轮结束,需要计算的所有数据都有了,然后就是reduce/gather到一张卡上。

phase2: all-gather

gather再两步,就三张卡都有需要的数据了。

  • S0: A0+B0+C0, S1: A1+B1+C1, S2: A2+B2+C2
  • step1:
    • GPU0 =>(S0) GPU1 =>(S1) GPU2 =>(S2) GPU0
      • GPU0: [S0, …, S2]
      • GPU1: [S0, S1, …]
      • GPU2: […, S1, S2]
  • step2:
    • GPU0 =>(S2) GPU1 =>(S0) GPU2 =>(S1) GPU0
      • GPU0: [S0, S1, S2]
      • GPU1: [S0, S1, S2]
      • GPU2: [S0, S1, S2]

下面是对上面两步走操作的图示例:

在这里插入图片描述

why ring-allreduce

  • 高效的带宽利用率 (Efficient Bandwidth Utilization):
    • 分块传输: Ring-AllReduce 将需要同步的数据(例如梯度)分成多个小块(chunks)。
    • 流水线效应: 数据块在环上逐步传输和计算。一个 GPU 可以同时发送一个块给下一个节点,并从上一个节点接收另一个块。这种流水线方式使得 GPU 间的通信链路(如 NVLink 或网络带宽)能够持续被利用,而不是在等待整个大块数据传输完成。
    • 点对点通信: 每个 GPU 只需与其在环中的直接邻居通信。这使得算法可以充分利用现代 GPU 系统中高速的点对点连接(如 NVLink),避免了所有 GPU 都向一个中心点发送数据可能造成的拥塞。理论上,在 N 个 GPU 的环中,每个 GPU 在 Scatter-Reduce 和 All-Gather 阶段总共发送和接收的数据量大约是 2 * (N-1)/N * TotalDataSize,接近于最优值 2 * TotalDataSize。
  • 均衡的通信负载 (Balanced Communication Load):
    • 在 Ring-AllReduce 中,每个 GPU 发送和接收的数据量大致相同,计算负载(Reduce 操作)也相对均衡地分布在各个步骤中。
    • 这避免了像基于树(Tree-based)的 All-Reduce 算法中可能出现的根节点通信瓶颈问题,因为在树形结构中,靠近根节点的 GPU 需要处理更多的数据聚合或分发任务。
  • 避免中心瓶颈 (Avoids Central Bottleneck):
    • 与参数服务器(Parameter Server)架构或其他需要中心协调节点的同步方法不同,Ring-AllReduce 是完全去中心化的。没有单个节点会成为性能瓶颈或单点故障。
  • 良好的可扩展性 (Good Scalability):
    • 虽然完成一次完整的 Ring-AllReduce 需要 2 * (N-1) 步(N 是 GPU 数量),延迟会随着 N 线性增加,但关键在于每个 GPU 的带宽需求基本保持不变(与 N 无关)。
      对于带宽是主要瓶颈的大规模系统(尤其是在传输大量梯度时),这种恒定的带宽需求使得 Ring-AllReduce 比那些带宽需求随节点数增加而增加的算法更具扩展性。

FSDP回顾

https://www.bilibili.com/BV1Kx4y187Te

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值