在一个图中(有向图或无向图),如果能够从一个结点出发一次性通过所有边且每条边只能通过一次,在通过所有边后能够回到出发点,则该回路称为该图的欧拉回路;不能回到出发点,则该通路称为欧拉通路。含有欧拉回路的图称为欧拉图,含欧拉通路的称为半欧拉图。
最简单的欧拉图:
最简单的半欧拉图:
如何用算法得到一张有向图的欧拉通路呢(无向图算法类似)?我们来看下面这张图:
假设1是起点,则有效的欧拉通路是1–>3–>4–>5–>3–>1–>2;看似我们只需要用最普通的DFS算法(DFS图的搜索算法点击这里)就可以实现,但实际上走出一条有效的欧拉通路还是有一定限制的——当我们处于起点位置:结点1时,我们只能选择走结点3而不能选择走结点2,因为结点2是一条死路,不能遍历图的所有边,所以由此可以得出,我们在设计算法寻找欧拉通路时,要注意走到死路的情况。
认真分析欧拉通路的走法我们可以发现,如果一张图是半欧拉图,则这张图最多有一条死路(一条死路是不能到达另一条死路的),而且这条死路一定是最后走的那条路,所以我们可以这样设计算法(找欧拉回路可以也可以用这一算法):
Hierholzer算法——1.从起点出发,进行深度优先搜索,同时维护一个栈。
2.每次沿着某条边从某个顶点移动到另外一个顶点的时候,都需要删除这条边。
3.如果所在结点已经没有可移动的路径,则将所在节点加入到栈中。
4.当所有结点入栈后,将栈弹入结果数组中(倒置),则可以得到这条欧拉通路)
图解:
Java代码:
这是一道leetcode的题解,用了上文介绍的Hierholzer算法,看题目点击这里
import java.util.*;
//Hierholzer算法