欧拉图(欧拉回路与欧拉通路)

欧拉图是指存在欧拉回路的图,而欧拉通路是能遍历所有边但不回到起点的路径。半欧拉图则至少包含一条欧拉通路。Hierholzer算法用于找到有向图的欧拉通路,避免死路,并通过深度优先搜索结合栈操作实现。Java实现展示了该算法的应用。
摘要由CSDN通过智能技术生成

在一个图中(有向图或无向图),如果能够从一个结点出发一次性通过所有边且每条边只能通过一次,在通过所有边后能够回到出发点,则该回路称为该图的欧拉回路;不能回到出发点,则该通路称为欧拉通路。含有欧拉回路的图称为欧拉图,含欧拉通路的称为半欧拉图。

最简单的欧拉图:在这里插入图片描述


最简单的半欧拉图:

在这里插入图片描述


如何用算法得到一张有向图的欧拉通路呢(无向图算法类似)?我们来看下面这张图:


在这里插入图片描述
假设1是起点,则有效的欧拉通路是1–>3–>4–>5–>3–>1–>2;看似我们只需要用最普通的DFS算法(DFS图的搜索算法点击这里)就可以实现,但实际上走出一条有效的欧拉通路还是有一定限制的——当我们处于起点位置:结点1时,我们只能选择走结点3而不能选择走结点2,因为结点2是一条死路,不能遍历图的所有边,所以由此可以得出,我们在设计算法寻找欧拉通路时,要注意走到死路的情况。
认真分析欧拉通路的走法我们可以发现,如果一张图是半欧拉图,则这张图最多有一条死路(一条死路是不能到达另一条死路的),而且这条死路一定是最后走的那条路,所以我们可以这样设计算法(找欧拉回路可以也可以用这一算法):

Hierholzer算法——1.从起点出发,进行深度优先搜索,同时维护一个栈。

2.每次沿着某条边从某个顶点移动到另外一个顶点的时候,都需要删除这条边。

3.如果所在结点已经没有可移动的路径,则将所在节点加入到栈中。

4.当所有结点入栈后,将栈弹入结果数组中(倒置),则可以得到这条欧拉通路)

图解:
在这里插入图片描述

Java代码:
这是一道leetcode的题解,用了上文介绍的Hierholzer算法,看题目点击这里

import java.util.*;
//Hierholzer算法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值