一点点关于超级初等的数论的听课笔记,可能会有不充足或者顺序不对的地方,请见谅(毕竟我是蒟蒻嘛)……
前言
1、求出所有因子
//求x的所有因子
for (int i = 1; i * i <= x; ++i)
if (x % i == 0) {
ans[++cnt] = i;
if (i * i != x) ans[++cnt] = x / i;
}
2、线性筛素数
//筛素数
inline void solve(int n) {
check[0] = 1, check[1] = 1;
for (int i = 2; i <= n; ++i) {
if (!check[i]) prim[++tot] = i;
for (int j = 1; j <= tot && i * prim[j] <= n; ++j) {
check[i * prim[j]] = 1;
if (i % prim[j] == 0) break;
}
}
}
题目链接hihocoder 1295
欧几里德
1、欧几里得算法(辗转相除法)
如果要求两个数a、b的最小大公约数,可以采取欧几里得算法:
inline int gcd(int x, int y) {
return (x % y == 0) ? y : gcd(y, x % y);
}
2、扩展欧几里得算法(解不定方程ax + by = c)
如果要找到不定方程ax + by = gcd(a, b)(a, b为常数)的任意一组解(x1, y1)可以使用扩展欧几里得算法:
inline void exgcd(int a, int b, int& d, int& x, int& y) {//d = gcd(a, b)
if (!b) d = a, x = 1, y = 0;
else {
exgcd(b, a % b, d, y, x);
y -= x * (a / b);
}
}
证明如下:
设:ax1 + by1 = gcd(a, b),bx2 + (a % b)y2 = gcd(b, a % b)
显然由欧几里得的性质可知gcd(a, b) = gcd(b, a % b),所以ax1 + by1 = bx2 + (a % b)y2
所以有:ax1 + by1 = bx2 + (a - a / b * b) y2 = ay2 + b(x2 - (a / b)y2)
所以:x1 = y2, y1 = x2 - (a / b)y2;
题目链接hihocoder 1297
3、乘法逆元
如果a * b≡1(mod m)(这是同余方程,后文会有介绍)且(a, m) = 1,那么就说b是a模m时的乘法逆元
在运算中除以一个数取模等于乘以这个数的逆元后再取模
乘法逆元一般可以直接用扩展欧几里得求,即不定方程ab - km = gcd(a, m)的解(b1, k1)中的b1
也可以用后文提到的费马小定理求m是质数时的逆元:因为a^(m - 1)≡1(mod m),所以a * a ^ (m - 2) ≡1(mod m),b = a ^ (m - 2)(用快速幂求即可)
还有一种线性求逆元的方法:A[i]=-(p/i)*A[p%i];
同余和剩余
1、同余方程:a≡b(mod m)
如果m是a - b的一个因子,那么就说a,b关于模m同余,即为a≡b(mod m)
如果有a≡b(mod m),那么b就是a模m的一个剩余
有关性质:传递性、同加减乘,不同除
2、线性同余方程
对于线性同余方程ax≡b mod n来说,可以将其转化为一个线性不定方程,即:ax - ny = b
贝祖定理:设两个正整数a、b的最大公约数gcd(a, b)=k,则关于两未知数x、y的方程(贝祖等式)ax+by=m当且仅当m是k的倍数时存在整数解,而当贝祖等式有解时,必然有无穷多个整数解。
由于贝祖定理可知:当gcd(a, n)不是b的约数时,方程无解,否则方程两边同时除以gcd后用扩展欧几里得及乘法逆元解决
当我们用扩展欧几里得算法求出一对解(x0, y0)后,因为如果ax0 + by0 = c成立,那么所有的x = x0 + bt, y = y0 - at均成立,所以如果我们求出同余方程的一个解后,可以直接不停的加上n / d
3、中国剩余定理
该方程组的通解为:
其中,,为模的逆元。
inline void exgcd(int a, LL b, LL& xx, LL& yy){
if (!b) {xx = 1, yy = 0;}
else {
exgcd(b, a % b, yy, xx);
yy -= (a / b) * xx;
}
}
inline LL CRT(int n, int a[], int m[]) {
LL M = 1, x = 0, xx, yy;
for (int i = 1; i <= n; ++i) M *= m[i];
for (int i = 1; i <= n; ++i) {
LL w = M / m[i];
exgcd(m[i], w, xx, yy);
x = (x + yy * w * a[i]) % M;
}
return (x + M) % M;
}
题目链接hihocoder 1303(这道题不能用通解去求)
欧拉函数及欧拉定理
1、剩余类
模m的一个剩余类是由与某个给定的剩余(mod m)同余的所有数组成的一个类,总共m个剩余类,可分别由0, 1, 2, 3, …,m - 1代表,如m = 5时:
0:0, 5, 10,…
1:1, 6, 11,…
2:2, 7, 12,…
……
2、完全剩余系
任何m个分别属于这m个剩余类的数组成的一个集合,都称为模m的一个完全剩余系(完系)
3、缩剩余系(φ(m))
我们用φ(m)表示不大于m的正整数中与m互质的正整数的个数,φ(m)也是m的欧拉函数值显然对于质数p有:φ(p)=p - 1,如φ(5)=4(1, 2, 3, 4)
对与非质数p有:,以下是自己的证明
对于φ(mn)可以有如下矩阵:
1 m + 1 2m + 1 … (n - 1)m + 1
2 m + 2 2m + 2 … (n - 1)m + 2
………………………………………...
m 2m 3m … nm
图1
对于第r(0 < r < m)行第k号元素(k - 1)m + r,显然有(k - 1)m与mn不互质,那么如果r与m不互质且n与m互质,那么整行都与mn不互质(证明不言而喻),对于第m行,显然整行都与mn不互质,所以每一列中与mn互质的个数是φ(m)
而如果将mn互换,即将矩阵变形(旋转90度)为图2:
1 n + 1 2n + 1 … (m - 1)n + 1
2 n + 2 2n + 2 … (m - 1)n + 2
………………………………………...
n 2n 3n … mn
图2
显然仍有每一列中与mn互质的个数为φ(n),而相对于图1,就是每一行中与mn互质的个数是φ(n)
综上:φ(mn) = φ(m) * φ(n),所以φ(m)具有积性
(2)对于某个数k,设k = p^c,则所有比k小φ(m)的正整数中与k不互质的个数为p^(c - 1) - 1个:
p * 1, p * 2, p * 3,…,p * p ^ (c - 1) - 1)
又因为一共有p^c - 1个数比k小,所以φ(p) = p ^ c - p ^ (c - 1) = p ^ c * (1 - 1 / p)
(3)结合(1)、(2)点可推出
所以有代码:
//计算某个数m的phi值
while (cin >> n && n != 0) {
LL ans = n;
if (n % 2 == 0) {while (n % 2 == 0) n /= 2; ans = ans / 2;}
for (LL i = 3; i * i <= n; i += 2) {
if (n % i == 0) {
ans = ans / i * (i - 1);
while (n % i == 0) n /= i;
}
}
if (n > 1) ans = ans / n * (n - 1);
cout << ans << endl;
}
return 0;
//计算1~n的phi值
phi[1] = 1;
for (int i = 2; i <= n; ++i)
if (!phi[i])
for (int j = i; j <= n; j += i) {
if (!phi[j]) phi[j] = j;
phi[j] = phi[j] / i * (i - 1);
}
关于欧拉函数还有一些神奇的性质:
(1)n为一个正整数:
(2)1 <= k <= n:
题目链接hihocoder 1298
4、费马小定理
费马小定理其实是欧拉定理的一种特殊情况:
当p是一个质数,且a、p互质时:
证明如下:
设p的完全剩余系为:P={1, 2, 3, 4, …,p - 1};
因为(a, p) = 1,所以A = {a, 2a, 3a, …,(p - 1)a}也是p的完全剩余系;
又完全剩余系的定义:a * 2a * 3a *…*(p - 1)a % p = 1 * 2 * 3 * … *(p - 1);
所以有(p - 1)!≡a^(p - 1) * (p- 1)!(mod p);
显然有((p - 1)!, p) = 1,所以a^(p - 1)≡1(mod p);
5、欧拉定理
当a、n互质时,有
证明可以类似的参考上面用φ(n)的性质去证明(其实当n为质数时,φ(n) = n - 1,即为费马小定理),在此就不赘述了
原根与离散对数
-->ACM以后补充
1、CJOJ 1508
2、原根和离散对数-->蓝书126