spark中map()和flatmap()的区别

本文详细解析了Map与FlatMap函数在RDD(弹性分布式数据集)中的使用区别,通过具体示例展示了如何利用这两种函数处理数据,特别强调了FlatMap在将列表转换为扁平结构中的独特作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先过一下定义:
map()是将函数用于RDD中的每个元素,将返回值构成新的RDD。

flatmap()是将函数应用于RDD中的每个元素,将返回的迭代器的所有内容构成新的RDD,这样就得到了一个由各列表中的元素组成的RDD,而不是一个列表组成的RDD。

有点模糊,没关系,看例子:

我们采用将每个元素按照空格的方法将每个元素进行分割,分别执行map与flatMap方法。
map方法如下图所示:
在这里插入图片描述

flatMap方法如下图所示:
在这里插入图片描述

再看个例子:

val rdd = sc.parallelize(List("coffee panda","happy panda","happiest panda party"))

输入

rdd.map(x=>x).collect

结果

res9: Array[String] = Array(coffee panda, happy panda, happiest panda party)

输入

rdd.flatMap(x=>x.split(" ")).collect

结果

res8: Array[String] = Array(coffee, panda, happy, panda, happiest, panda, party)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值