“回文子串、最长回文子序列”总结,动态规划再显神通(Java实现)

目录

一、回文子串

1.1、dp定义

1.2、递推公式

1.3、初始化

1.4、遍历顺序

1.5、解题代码

二、最长回文子序列

2.1、dp定义

2.2、递推公式

2.3、初始化

2.4、遍历顺序

2.5、解题代码


一、回文子串

题目描述:

题目来源:647. 回文子串

1.1、dp定义

分析:

        如果这里我们继续像以往那样定义成“以字符串第i个元素为结尾...”,如果尝试过,你就会发现很难找出dp[i]这个状态的推导,看到回文子串,因该更多的去想到他的回文特性,因此,可以定义一个二维的dp数组,来表示字符串的区间[i, j]是否回文。

dp定义:

dp[i][j](布尔类型):区间[i, j]是否为回文子串。

1.2、递推公式

分析:

        根据回文串的性质,我们可以这样想,如果一个字符串的左右两端的字符相同,并且除了这两个字符的中间的字符串是回文串,那么他整体就是一个回文串,如下图:

并且当[i, j]这个区间长度小于等于1时,是一定回文的!

状态转移方程:

if(s.charAt(i) == s.charAt(j)) { //左右两端字符相等
    if(j - i <= 1) { //区间长度小于等于1
       dp[i][j] = true;
       result++;
    } else if(dp[i + 1][j - 1]) { //中间是回文串
        dp[i][j] = true;
        result--;
    }
}

        注意:dp只是用来判断当前区间的字符串是否为回文串,一旦判断是回文串,需要用一个计数器来记录。

1.3、初始化

分析:

由递推公式可以看出,我们让dp的每一个值都先为false ,通过递推才能知道哪些值为true;

1.4、遍历顺序

从递推公式中可以看出会用到的状态只有dp[i + 1][j - 1],如下图:

 也就是说需要从左下角才能推出dp[i][j],那么我们就需要从下往上,从左往右遍历~

1.5、解题代码

class Solution {
    public int countSubstrings(String s) {
        int len = s.length();
        boolean[][] dp = new boolean[len][len];
        int result = 0;
        for(int i = len - 1; i >= 0; i--) {
            for(int j = i; j < len; j++) {
                if(s.charAt(i) == s.charAt(j)) {
                    if(j - i <= 1) {
                       dp[i][j] = true;
                       result++;
                    } else if(dp[i + 1][j - 1]) {
                        dp[i][j] = true;
                        result++;
                    }
                }
            }
        }
        return result;
    }
}

二、最长回文子序列

题目描述:

题目来源:516. 最长回文子序列 

2.1、dp定义

分析:

        由上一道题“回文子串”分析到,对于回文串的定义,想要利用上回文串的特点,就需要定义[i, j]这样一个区间,dp[i, j]就是最长回文子序列的长度。

dp定义:

dp[i][j]:在区间[i, j]里,最长回文子序列的长度。

2.2、递推公式

分析:

        由上一道题“回文子串”分析到,如果一个字符串的左右两端的字符相同,并且除了这两个字符的中间的字符串是回文串,那么他整体就是一个回文串,(不理解的可以看看上一道题的递推公式分析)那么想要得到dp[i][j],就有以下两种情况:

1.s[i] == s[j],当两端的字符相等时,那么就可以由除了两端之外的中间的字符串的最长子序列长度dp[i + 1][j - 1] +2得到,这里的+2就表示加上两端字符的长度,如下图:

2.s[i] != s[j],当两端的字符不相等时,那么要考虑忽略s[i]或者s[j]然后挑选出回文子序列长度最长的字符串,如下图:

动态转移方程:

if(s.charAt(i) == s.charAt(j)) {
    dp[i][j] = dp[i + 1][j - 1] + 2;//两端的元素都考虑
} else {
    dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);//两端元素只考虑最大的
}

2.3、初始化

分析:

        由递推公式可以看出,需要的状态有:dp[i + 1][j - 1]、dp[i + 1][j]、 dp[i][j - 1],将这些状态一直推下去,就可以找到源头就是dp[i][j](这里i == j),i等于j,就意味区间为[i, j]指向的是同一个字符,那么必然是回文的,所以初始化为1。

初始化:

dp[i][i] = 1;(这里i, i表示i等于j)

2.4、遍历顺序

分析:

由递推公式可以看出,由下图中的几个方向可以推导出dp[i][j]:

那么我们就需要从下往上,从左往右遍历~

2.5、解题代码

class Solution {
    public int longestPalindromeSubseq(String s) {
        int len = s.length();
        int[][] dp = new int[len][len];
        //初始化
        for(int i = 0; i < len; i++) {
            dp[i][i] = 1;
        }
        //递推
        for(int i = len - 1; i >= 0; i--) {
            for(int j = i + 1; j < len; j++) {
                if(s.charAt(i) == s.charAt(j)) {
                    dp[i][j] = dp[i + 1][j - 1] + 2;//两端的元素都考虑
                } else {
                    dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);//两端元素只考虑最大的
                }
            }
        }
        return dp[0][len - 1];
    }
}

  • 6
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
最长回文子串是指在一个字符串最长回文子序列回文是指正着读和倒着读都一样的字符串动态规划是解决最长回文子串问题的一种常用方法。动态规划的思想是将问题分解成子问题,通过求解子问题的最优解来得到原问题的最优解。在最长回文子串问题中,我们可以使用一个二维数组dp[i][j]来表示从i到j的子串是否为回文子串。如果dp[i][j]为true,则表示从i到j的子串回文子串,否则不是。我们可以通过以下步骤来求解最长回文子串: 1. 初始化dp数组,将所有dp[i][i]都设置为true,表示单个字符是回文子串。 2. 遍历字符串s,从长度为2的子串开始,依次判断每个子串是否为回文子串。如果是,则将dp[i][j]设置为true。 3. 在遍历的过程中,记录最长回文子串的长度和起始位置。 4. 最后,通过起始位置和长度来截取最长回文子串。 下面是一个示例代码,可以帮助你更好地理解动态规划求解最长回文子串的过程: class Solution { public: string longestPalindrome(string s) { int len=s.size(); if(len<2) return s; bool dp[len][len];//布尔型,dp[i][j]表示从i到j是否构成回文 int max_count=1;//最大字串的长度 int start=0;//最长字串的起始位置 for(int j=0;j<len;j++) { for(int i=0;i<j;i++) { if(s[i]!=s[j]) dp[i][j]=false; else if((j-i)<3)//(j-1)-(i+1)+1<2表示dp[i][j]的最大字串长度为1 dp[i][j]=true; else { dp[i][j]=dp[i+1][j-1]; } if((j-i+1)>max_count&&dp[i][j]) { max_count=j-i+1; start=i; } } } return s.substr(start,max_count);//截取字符串 } };

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈亦康

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值