这仍然是一道关于A/B的题,只不过A和B都换成了多项式。你需要计算两个多项式相除的商Q和余R,其中R的阶数必须小于B的阶数。
输入格式:
输入分两行,每行给出一个非零多项式,先给出A,再给出B。每行的格式如下:
N e[1] c[1] ... e[N] c[N]
其中N
是该多项式非零项的个数,e[i]
是第i
个非零项的指数,c[i]
是第i
个非零项的系数。各项按照指数递减的顺序给出,保证所有指数是各不相同的非负整数,所有系数是非零整数,所有整数在整型范围内。
输出格式:
分两行先后输出商和余,输出格式与输入格式相同,输出的系数保留小数点后1位。同行数字间以1个空格分隔,行首尾不得有多余空格。注意:零多项式是一个特殊多项式,对应输出为0 0 0.0
。但非零多项式不能输出零系数(包括舍入后为0.0)的项。在样例中,余多项式其实有常数项-1/27
,但因其舍入后为0.0,故不输出。
输入样例:
4 4 1 2 -3 1 -1 0 -1
3 2 3 1 -2 0 1
输出样例:
3 2 0.3 1 0.2 0 -1.0
1 1 -3.1
代码:
#include <bits/stdc++.h>
using namespace std;
const int N=100010;
double a[N],b[N],c[N];
void fun(double arr[],int x)
{
int cnt=0;
for(int i=x;i>=0;i--)
{
if(abs(arr[i])+0.05>=0.1)
{
cnt++;
}
}
printf("%d",cnt);
if(cnt==0)
{
printf(" 0 0.0");
}
for(int i=x;i>=0;i--)
{
if(abs(arr[i])+0.05>=0.1)
{
printf(" %d %.1lf",i,arr[i]);
}
}
}
int main()
{
int n,m,x,idx=-1e9,idx2=-1e9;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&x);scanf("%lf",&a[x]);
idx=max(idx,x);
}
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
scanf("%d",&x);scanf("%lf",&b[x]);
idx2=max(idx2,x);
}
int tmp=idx-idx2;
while(idx-idx2>=0)
{
double q=a[idx]/b[idx2];
c[idx-idx2]=q;
for(int i=idx,j=idx2;i>=0&&j>=0;i--,j--)
{
a[i]=a[i]-b[j]*q;
}
while(a[idx]==0)
{
idx--;
}
}
fun(c,tmp);
printf("\n");
fun(a,idx);
printf("\n");
return 0;
}