古人云:秀恩爱,分得快。
互联网上每天都有大量人发布大量照片,我们通过分析这些照片,可以分析人与人之间的亲密度。如果一张照片上出现了 K 个人,这些人两两间的亲密度就被定义为 1/K。任意两个人如果同时出现在若干张照片里,他们之间的亲密度就是所有这些同框照片对应的亲密度之和。下面给定一批照片,请你分析一对给定的情侣,看看他们分别有没有亲密度更高的异性朋友?
输入格式:
输入在第一行给出 2 个正整数:N(不超过1000,为总人数——简单起见,我们把所有人从 0 到 N-1 编号。为了区分性别,我们用编号前的负号表示女性)和 M(不超过1000,为照片总数)。随后 M 行,每行给出一张照片的信息,格式如下:
K P[1] ... P[K]
其中 K(≤ 500)是该照片中出现的人数,P[1] ~ P[K] 就是这些人的编号。最后一行给出一对异性情侣的编号 A 和 B。同行数字以空格分隔。题目保证每个人只有一个性别,并且不会在同一张照片里出现多次。
输出格式:
首先输出 A PA
,其中 PA
是与 A
最亲密的异性。如果 PA
不唯一,则按他们编号的绝对值递增输出;然后类似地输出 B PB
。但如果 A
和 B
正是彼此亲密度最高的一对,则只输出他们的编号,无论是否还有其他人并列。
输入样例 1:
10 4
4 -1 2 -3 4
4 2 -3 -5 -6
3 2 4 -5
3 -6 0 2
-3 2
输出样例 1:
-3 2
2 -5
2 -6
输入样例 2:
4 4
4 -1 2 -3 0
2 0 -3
2 2 -3
2 -1 2
-3 2
输出样例 2:
-3 2
代码:
#include <bits/stdc++.h>
using namespace std;
const int N=1010;
int n,m,k;
set<string> S[N];
string a,b;
map<string,double> mpa,mpb;
double maxa,maxb;
vector<string> resa,resb;
bool cmp(string a,string b)
{
return abs(stoi(a))<abs(stoi(b));
}
int main()
{
scanf("%d %d",&n,&m);
for(int i=0;i<m;i++)
{
scanf("%d",&k);
while(k--)
{
string str;
cin>>str;
S[i].insert(str);
}
}
cin>>a>>b;
for(int i=0;i<m;i++)
{
if(S[i].count(a))
{
for(auto x:S[i])
{
if((a[0]=='-'&&x[0]!='-')||(a[0]!='-'&&x[0]=='-'))
{
mpa[x]+=1.0/S[i].size();
}
}
}
if(S[i].count(b))
{
for(auto x:S[i])
{
if((b[0]=='-'&&x[0]!='-')||(b[0]!='-'&&x[0]=='-'))
{
mpb[x]+=1.0/S[i].size();
}
}
}
}
for(auto x:mpa)
{
maxa=max(maxa,x.second);
}
for(auto x:mpb)
{
maxb=max(maxb,x.second);
}
for(auto x:mpa)
{
if(maxa==x.second)
{
resa.push_back(x.first);
}
}
for(auto x:mpb)
{
if(maxb==x.second)
{
resb.push_back(x.first);
}
}
if(maxa==mpa[b]&&maxb==mpb[a])
{
cout<<a<<" "<<b<<endl;
}
else
{
sort(resa.begin(),resa.end(),cmp);
sort(resb.begin(),resb.end(),cmp);
for(int i=0;i<resa.size();i++)
{
cout<<a<<" "<<resa[i]<<endl;
}
for(int i=0;i<resb.size();i++)
{
cout<<b<<" "<<resb[i]<<endl;
}
}
return 0;
}