将一个正整数N分解成几个正整数相加,可以有多种分解方法,例如7=6+1,7=5+2,7=5+1+1,…。编程求出正整数N的所有整数分解式子。
输入格式:
每个输入包含一个测试用例,即正整数N (0<N≤30)。
输出格式:
按递增顺序输出N的所有整数分解式子。递增顺序是指:对于两个分解序列N1={n1,n2,⋯}和N2={m1,m2,⋯},若存在i使得n1=m1,⋯,ni=mi,但是ni+1<mi+1,则N1序列必定在N2序列之前输出。每个式子由小到大相加,式子间用分号隔开,且每输出4个式子后换行。
输入样例:
7
输出样例:
7=1+1+1+1+1+1+1;7=1+1+1+1+1+2;7=1+1+1+1+3;7=1+1+1+2+2
7=1+1+1+4;7=1+1+2+3;7=1+1+5;7=1+2+2+2
7=1+2+4;7=1+3+3;7=1+6;7=2+2+3
7=2+5;7=3+4;7=7
深度优先可解,为了格式化需要费点功夫
#include <stdio.h>
#include <iostream>
#include <stdlib.h>
using namespace std;
void sth(int *p,int n,int sum,int lim,int *tt){
if(sum==n){
int s=0;
(*tt)++;
printf("%d=",n);
for(int i=1;i<=n;i++){
for(int j=0;j<p[i];j++){
s+=i;
printf("%d",i);
if(s!=n)printf("+");
}
}
if(p[n])return;
if((*tt)%4)printf(";");
else printf("\n",*tt);
}
else {
for(int i=lim;i<=n;i++){
if(i+sum<=n){
int *x=(int*)malloc(sizeof(int)*n+1);
for(int j=1;j<=n;j++)x[j]=p[j];
x[i]++;
sth(x,n,sum+i,i,tt);
}
}
}
}
int main(void){
int n,*p,tt=0;
cin>>n;
p=(int*)malloc(sizeof(int)*n+1);
for(int i=1;i<=n;i++)p[i]=0;
sth(p,n,0,1,&tt);
return 0;
}