7-37 整数分解为若干项之和 (20 分)

将一个正整数N分解成几个正整数相加,可以有多种分解方法,例如7=6+1,7=5+2,7=5+1+1,…。编程求出正整数N的所有整数分解式子。

输入格式:

每个输入包含一个测试用例,即正整数N (0<N≤30)。

输出格式:

按递增顺序输出N的所有整数分解式子。递增顺序是指:对于两个分解序列N1​={n1​,n2​,⋯}和N2​={m1​,m2​,⋯},若存在i使得n1​=m1​,⋯,ni​=mi​,但是ni+1​<mi+1​,则N1​序列必定在N2​序列之前输出。每个式子由小到大相加,式子间用分号隔开,且每输出4个式子后换行。

输入样例:

7

输出样例:

7=1+1+1+1+1+1+1;7=1+1+1+1+1+2;7=1+1+1+1+3;7=1+1+1+2+2
7=1+1+1+4;7=1+1+2+3;7=1+1+5;7=1+2+2+2
7=1+2+4;7=1+3+3;7=1+6;7=2+2+3
7=2+5;7=3+4;7=7

深度优先可解,为了格式化需要费点功夫

#include <stdio.h>
#include <iostream>
#include <stdlib.h>
using namespace std;
void sth(int *p,int n,int sum,int lim,int *tt){
	if(sum==n){
		int s=0;
		(*tt)++;
		printf("%d=",n);
		for(int i=1;i<=n;i++){
			for(int j=0;j<p[i];j++){
				s+=i;
				printf("%d",i);
				if(s!=n)printf("+");
			}	
		}
		if(p[n])return;
		if((*tt)%4)printf(";");
		else printf("\n",*tt);
	}
	else {
		for(int i=lim;i<=n;i++){
			if(i+sum<=n){
				int *x=(int*)malloc(sizeof(int)*n+1);
				for(int j=1;j<=n;j++)x[j]=p[j];
				x[i]++;
				sth(x,n,sum+i,i,tt);
			}
		}
	}
	
}
int main(void){
	int n,*p,tt=0;
	cin>>n;
	p=(int*)malloc(sizeof(int)*n+1);
	for(int i=1;i<=n;i++)p[i]=0;
	sth(p,n,0,1,&tt);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值