快速幂的原理与代码实现

普通乘方运算

原理

众所周知,如果我们想要计算 a n a^n an,最常规的方法是计算 a × a × … × a ⏟ n 个 a \underbrace{a \times a \times …\times a}_{n个a} na a×a××a

这很容易用代码进行模拟,只需要用 for 循环即可:

代码实现

#include <bits/stdc++.h>
#define int long long
using namespace std;

int Power(int a, int b)
{
	int ans = 1;
	for(int i = 1; i <= b; i = i + 1)
		ans *= a;
	return ans;
}

signed main()
{
	int a, n;
	cin >> a >> n;
	cout << Power(a, n);
	return 0;
}

那么我们来分析一下,这样做的复杂度是多少呢?

注意到,这个循环会执行 n n n 次,因此复杂度是 O ( n ) O(n) O(n) 的。

很多时候, O ( n ) O(n) O(n) 的复杂度都是很不错的,但是这也要分情况来讨论。如果针对乘方运算我们采用这种 O ( n ) O(n) O(n) 复杂度的算法,在数据过大是很有可能会超时,这个时候我们就要想到采用更优的手段来计算乘方了。


快速幂

原理

根据初中数学知识,我们知道有:

a n × a m = a n + m a^n \times a^m = a^{n + m} an×am=an+m
( a n ) m = a n m (a^n)^m = a^{nm} (an)m=anm

根据这两条公式,我们不难把 a n a^n an 进行拆分。

我们可以采用二进制拆分法将 n n n 进行拆分。

n = 2 i + 2 j + … + 2 k n = 2^i + 2 ^ j + … + 2 ^ k n=2i+2j++2k

那么有:

a n = a 2 i + 2 j + … + 2 k a^n=a^{2^i + 2^j + … + 2^k} an=a2i+2j++2k

根据上面两条公式,这个式子可以继续转化:

a n = a 2 i × a 2 j × … × a 2 k a^n=a^{2^i} \times a^{2^j} \times … \times a^{2^k} an=a2i×a2j××a2k

注意到:式子最多只能拆分成 log ⁡ 2 n \log_2 n log2n 项,而且可以递推得到从 a 2 0 a^{2^0} a20 a 2 i a^{2^i} a2i 的所有取值,易得时间复杂度为 O ( log ⁡ n ) O(\log n) O(logn)

代码实现

#include <bits/stdc++.h>
#define int long long
using namespace std;

int QuickPower(int a, int b)
{
	int ans = 1;
	int num = a;
	while(b > 0)
	{
		if(b % 2 == 1)
			ans *= num;
		num *= num;
		b /= 2;
	}
	return ans;
}

signed main()
{
	int a, n;
	cin >> a >> n;
	cout << QuickPower(a, n);
	return 0;
}

习题:洛谷 P1126 快速幂

双倍经验 AtCoder atc002 n^p mod m

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值