HDU1466 计算直线的交点数

计算直线的交点数 HDU1466

题目描述

平面上有n条直线,且无三线共点,问这些直线能有多少种不同交点数。 比如,如果n=2,则可能的交点数量为0(平行)或者1(不平行)。

Sample Input

2
3

Sample Output

0 1
0 2 3

解法

动态规划的思想,考虑dp[i]:

  • dp[i]代表有 i 条直线时交点个数的集合
    先将前 i - 1 条直线分为两组,其中一组 j 个直线与第 i 条直线平行,那么这j+1条直线与前i - 1条直线有(j+1)*(i-1-j)个交点,前(i-1-j)条直线间交点个数的集合为dp[i-1-j],那么有方程
  • dp[i] = { dp[i-1-j][k] + (j+1)*(i-1-j) }
    其中dp[i][k]代表集合dp[i]中第k个元素的值
#include<cstdio>
#include<cstring>
#include<set>

using namespace std;

set<int> dp[21];

int main()
{
    int N;
    while(~scanf("%d",&N))
    {
        for(int i=0;i<=N;i++)
        {
            dp[i].clear();
            dp[i].insert(0);
        }

        for(int i=2;i<=N;i++)
        {
            for(int j=0;j<i;j++)
            {
                int temp = (j+1)*(i-1-j);
                set<int>::iterator it;
                for(it = dp[i-1-j].begin(); it != dp[i-1-j].end(); it++)
                {
                    dp[i].insert(*it + temp);
                }
            }
        }
        set<int>::iterator it = dp[N].begin();
        for(;it != dp[N].end(); it++)
        {
            int temp = *it;
            printf("%s%d",temp?" ":"",temp);
        }
        puts("");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值