标题:搭积木
小明对搭积木非常感兴趣。他的积木都是同样大小的正立方体。
在搭积木时,小明选取 m 块积木作为地基,将他们在桌子上一字排开,中间不留空隙,并称其为第0层。
随后,小明可以在上面摆放第1层,第2层,……,最多摆放至第n层。摆放积木必须遵循三条规则:
规则1:每块积木必须紧挨着放置在某一块积木的正上方,与其下一层的积木对齐;
规则2:同一层中的积木必须连续摆放,中间不能留有空隙;
规则3:小明不喜欢的位置不能放置积木。
其中,小明不喜欢的位置都被标在了图纸上。图纸共有n行,从下至上的每一行分别对应积木的第1层至第n层。每一行都有m个字符,字符可能是‘.’或‘X’,其中‘X’表示这个位置是小明不喜欢的。
现在,小明想要知道,共有多少种放置积木的方案。他找到了参加蓝桥杯的你来帮他计算这个答案。
由于这个答案可能很大,你只需要回答这个答案对1000000007(十亿零七)取模后的结果。
注意:地基上什么都不放,也算作是方案之一种。
【输入格式】
输入数据的第一行有两个正整数n和m,表示图纸的大小。
随后n行,每行有m个字符,用来描述图纸 。每个字符只可能是‘.’或‘X’。
【输出格式】
输出一个整数,表示答案对1000000007取模后的结果。
【样例输入1】
2 3
..X
.X.
【样例输出1】
4
【样例说明1】
成功的摆放有(其中O表示放置积木):
(1)
..X
.X.
(2)
..X
OX.
(3)
O.X
OX.
(4)
..X
.XO
【样例输入2】
3 3
..X
.X.
...
【样例输出2】
16
【数据规模约定】
对于10%的数据,n=1,m<=30;
对于40%的数据,n<=10,m<=30;
对于100%的数据,n<=100,m<=100。
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
思路:dp
dp[l][r]:表示在某一层时积木区间包含[l,r]的所有情况数
则 dp[l][r]+=dp[l][r+1]+dp[l-1][r]-dp[l-1][r+1]
那么对于第h层如果区间[l,r]可以放置积木,ans就加上第h-1层的dp[l][r],即 ans+=dp[l][r],
同时更新dp[l][r]:dp[l][r]+=(dp[l][r+1]+dp[l-1][r]-dp[l-1][r+1])%MOD;
Code:
#include<iostream>
using namespace std;
typedef long long LL;
const LL MOD=1000000007;
const int MAX_N=105;
const int MAX_M=105;
int n,m;
int a[MAX_N][MAX_M];
LL dp[MAX_M][MAX_M];
int main()
{
ios::sync_with_stdio(false);
cin>>n>>m;
char ch;
for(int i=n;i>=1;--i)
for(int j=1;j<=m;++j)
{
cin>>ch;
a[i][j]=a[i][j-1];
if(ch=='X') ++a[i][j];
}
LL ans=1;
for(int l=1;l<=m;++l)
for(int r=m;r>=l;--r)
if(a[1][r]-a[1][l-1]==0)
dp[l][r]=1+dp[l][r+1]+dp[l-1][r]-dp[l-1][r+1],++ans;
for(int i=2;i<=n;++i)
for(int l=1;l<=m;++l)
for(int r=m;r>=l;--r)
if(a[i][r]-a[i][l-1]==0){
ans=(ans+dp[l][r])%MOD;
dp[l][r]+=(dp[l][r+1]+dp[l-1][r]-dp[l-1][r+1])%MOD;
}else dp[l][r]=0;
cout<<ans<<endl;
return 0;
}