数据结构-二叉排序树(C++代码实现)

数据结构中二叉排序树的C++代码实现

有关参考博客:https://blog.csdn.net/kang___xi/article/details/80392565

代码及其测试结果如下

Code :

/*
二叉排序树(二叉搜索树):树上所有结点的左子树的值均小于该节点的值,右子树的值均大于该节点的值
https://blog.csdn.net/kang___xi/article/details/80392565
*/ 
#include<iostream>
#include<queue>
using namespace std;
typedef int ElemType;
typedef int KeyType;
typedef struct BSTNode{
	KeyType key;
	ElemType data;
	BSTNode *left,*right;
	BSTNode()=default;
	BSTNode(KeyType k):key(k),data(0),left(NULL),right(NULL){}
}BSTree;

BSTree* SearchBST(BSTree *rt, KeyType k){		//查找
	if(rt==NULL||k==rt->key)	return rt;
	if(k<rt->key)	return SearchBST(rt->left,k);
	else	return SearchBST(rt->right,k);
}

bool InsertBST(BSTree *&rt, KeyType k){		//插入
	if(rt==NULL){
		rt=new BSTNode(k);
		return true;
	}
	if(k==rt->key)	return false;
	if(k<rt->key)	return InsertBST(rt->left,k);
	else	return InsertBST(rt->right,k);
}


void DeleteBST_(BSTree *&rt, BSTree *pt){	//删除节点有左右子树时处理
	if(rt->right==NULL){
		BSTNode *p=rt;
		pt->key=rt->key;
		pt->data=rt->data; 
		rt=rt->left;
		delete p;
	}else{
		DeleteBST_(rt->right,pt);
	}
}

/*
删除节点,分三种情况
一:被删除节点没有孩子节点,则直接删除即可
二:被删除节点只有一个孩子节点,则将其孩子节点代替删除节点的位置,随后删除节点即可
三:被删除节点有左右孩子,则可移花接木,即取左子树的最大值(也可取右子树的最小值)存放在被删除节点中,随后删除左子树的最大值的节点即可 
对于情况一,可同情况二处理
*/
bool DeleteBST(BSTree *&rt, KeyType k){		//删除
	if(rt==NULL)	return false;
	int res=true;
	if(rt->key==k){
		if(rt->left==NULL){
			rt=rt->right;
		}else if(rt->right==NULL){
			rt=rt->left;
		}else{
			DeleteBST_(rt->left,rt);
		}
	}else if(k<rt->key){
		res=DeleteBST(rt->left,k);
	}else{
		res=DeleteBST(rt->right,k);
	}
	return res;
}

void InorderTraversal(BSTree *rt){	//中序遍历 
	if(rt==NULL)	return;
	InorderTraversal(rt->left);
	cout<<rt->key<<" ";
	InorderTraversal(rt->right);
}

void LevelOrder(BSTree* root) {	//层序遍历 
    if(root==NULL)  return;
    queue<BSTree*> que;
    que.push(root);
    int n;
    BSTree *rt;
    cout<<"层序遍历:当前节点 = 左节点 右节点"<<endl; 
    while(!que.empty()){
    	n=que.size();
    	while(n--){
    		rt=que.front();	que.pop();
        	cout<<rt->key<<"\t=\t";
        	if(rt->left)	cout<<rt->left->key<<"\t";
        	else cout<<"#\t";
        	if(rt->right)	cout<<rt->right->key<<"\t";
        	else cout<<"#\t";
        	cout<<endl;
        	if(rt->left)	que.push(rt->left);
        	if(rt->right)	que.push(rt->right);
        }
	}
}

int main()
{
	int n=10;
	int a[100]={4,2,6,9,7,1,5,8,10,3};
	cout<<"插入顺序:"; 
	for(int i=0;i<n;++i)
		cout<<a[i]<<" ";
	cout<<endl; 
	BSTree *rt=NULL;
	for(int i=0;i<n;++i)
		InsertBST(rt,a[i]);
	cout<<"中序遍历:";
	InorderTraversal(rt);
	cout<<endl;
	cout<<"#############################"<<endl;
	LevelOrder(rt);
	cout<<"#############################"<<endl;
	for(int i=0;i<n;++i)
	{
		DeleteBST(rt,a[i]);
		cout<<"删除 "<<a[i]<<": ";
		InorderTraversal(rt);
		cout<<endl;
	}
	
	return 0;
}

测试结果:
在这里插入图片描述

  • 2
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值