「递归算法」:目标和(两种解法)

一、题目

给你一个非负整数数组 nums 和一个整数 target 。

向数组中的每个整数前添加 '+' 或 '-' ,然后串联起所有整数,可以构造一个 表达式 :

  • 例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1" 。

返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

示例 1:

输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

示例 2:

输入:nums = [1], target = 1
输出:1

二、思路解析

这道题本质也是求相同的子问题,直接考虑递归。

解法一

解法一我是定义了一个 int 类型全局变量 path,在递归的过程,让数组的元素依次加到和减到 path 变量中,最后比较 path 的值和要求的值是否一致即可。

这种解法还是比较直观的,就是有个小细节:别忘了每次嵌套递归完的恢复现场操作。

解法二

而解法二我是在 dfs 函数的参数列表多加了一个 int 类型变量 path。

在嵌套递归的时候,就不用再写恢复现场操作的代码了,因为在每次递归调用结束后,没有对状态进行修改或保存,所以不需要手动恢复现场。

我们再回过头来看,解法一需要实现“恢复现场”操作,是因为使用了一个全局变量 path 来保存当前路径和,在递归过程中会被多次修改,如果不及时恢复现场,可能会导致后续递归操作出现错误。

所以,二者的本质区别在于是否使用了共享状态

解法一通过全局变量共享了当前路径和,导致需要实现“恢复现场”操作;

解法二没有使用共享状态,每次递归调用都传入了当前路径和,避免了这个问题。

这一步操作,值得各位仔细品味。

三、完整代码

class Solution {

    // // 解法一:
    // int ret;
    // int target;
    
    // int path;

    // public int findTargetSumWays(int[] nums, int _target) {
    //     target = _target;
    //     // 解法一:
    //     dfs(nums , 0);


    //     return ret;
    // }
    // public void dfs(int[] nums , int pos){
    //     if(pos == nums.length){
    //         if(path == target){
    //             ret ++;
    //         }       
    //         return;
    //     }

    //         path += nums[pos];
    //         dfs(nums , pos + 1);
    //         path -= nums[pos];

    //         path -= nums[pos];
    //         dfs(nums , pos + 1);
    //         path += nums[pos];
    // }

    // 解法二:
    int ret;
    int target;

    public int findTargetSumWays(int[] nums, int _target) {
        target = _target;


        dfs(nums , 0 , 0);
        return ret;
    }

    public void dfs(int[] nums , int pos , int path){
        if(pos == nums.length){
            if(path == target){
                ret ++;
            }       
            return;
        }

            dfs(nums , pos + 1 , path + nums[pos]);

            dfs(nums , pos + 1 , path - nums[pos]);
    }
}

以上就是本篇博客的全部内容啦,如有不足之处,还请各位指出,期待能和各位一起进步!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱敲代码的罗根

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值