一、题目
给你一个非负整数数组 nums
和一个整数 target
。
向数组中的每个整数前添加 '+'
或 '-'
,然后串联起所有整数,可以构造一个 表达式 :
- 例如,
nums = [2, 1]
,可以在2
之前添加'+'
,在1
之前添加'-'
,然后串联起来得到表达式"+2-1"
。
返回可以通过上述方法构造的、运算结果等于 target
的不同 表达式 的数目。
示例 1:
输入:nums = [1,1,1,1,1], target = 3 输出:5 解释:一共有 5 种方法让最终目标和为 3 。 -1 + 1 + 1 + 1 + 1 = 3 +1 - 1 + 1 + 1 + 1 = 3 +1 + 1 - 1 + 1 + 1 = 3 +1 + 1 + 1 - 1 + 1 = 3 +1 + 1 + 1 + 1 - 1 = 3
示例 2:
输入:nums = [1], target = 1 输出:1
二、思路解析
这道题本质也是求相同的子问题,直接考虑递归。
解法一
解法一我是定义了一个 int 类型全局变量 path,在递归的过程,让数组的元素依次加到和减到 path 变量中,最后比较 path 的值和要求的值是否一致即可。
这种解法还是比较直观的,就是有个小细节:别忘了每次嵌套递归完的恢复现场操作。
解法二
而解法二我是在 dfs 函数的参数列表多加了一个 int 类型变量 path。
在嵌套递归的时候,就不用再写恢复现场操作的代码了,因为在每次递归调用结束后,没有对状态进行修改或保存,所以不需要手动恢复现场。
我们再回过头来看,解法一需要实现“恢复现场”操作,是因为使用了一个全局变量 path
来保存当前路径和,在递归过程中会被多次修改,如果不及时恢复现场,可能会导致后续递归操作出现错误。
所以,二者的本质区别在于是否使用了共享状态。
解法一通过全局变量共享了当前路径和,导致需要实现“恢复现场”操作;
解法二没有使用共享状态,每次递归调用都传入了当前路径和,避免了这个问题。
这一步操作,值得各位仔细品味。
三、完整代码
class Solution {
// // 解法一:
// int ret;
// int target;
// int path;
// public int findTargetSumWays(int[] nums, int _target) {
// target = _target;
// // 解法一:
// dfs(nums , 0);
// return ret;
// }
// public void dfs(int[] nums , int pos){
// if(pos == nums.length){
// if(path == target){
// ret ++;
// }
// return;
// }
// path += nums[pos];
// dfs(nums , pos + 1);
// path -= nums[pos];
// path -= nums[pos];
// dfs(nums , pos + 1);
// path += nums[pos];
// }
// 解法二:
int ret;
int target;
public int findTargetSumWays(int[] nums, int _target) {
target = _target;
dfs(nums , 0 , 0);
return ret;
}
public void dfs(int[] nums , int pos , int path){
if(pos == nums.length){
if(path == target){
ret ++;
}
return;
}
dfs(nums , pos + 1 , path + nums[pos]);
dfs(nums , pos + 1 , path - nums[pos]);
}
}
以上就是本篇博客的全部内容啦,如有不足之处,还请各位指出,期待能和各位一起进步!