Dinic笔记

算法思想

Dinic相对于EK算法,更注重点的使用,Dinic算法首先BFS搜索将图进行分层,然后DFS沿着层次+1且 c a p > f l o w cap>flow cap>flow的方向寻找增广路,回溯时增流,

算法步骤

  1. BFS残余网络,分层
  2. 在层次图DFS,DFS沿着层次+1且 c a p > f l o w cap>flow cap>flow的方向找增广路,回溯增流
  3. 重复步骤,直到不存在增广路

在DFS过程中,设搜索的当前节点为 i i i,当到达 i i i时,有一个预值 f l o w flow flow作为 i i i可增流的总值,也就是说,尽量使所有 i i i的深层邻接点凑出这个 f l o w flow flow,深层邻接点的增流被汇总到 i i i,有些类似于累和,具体可见代码

Dinic执行时每次要重新分层,从源点到汇点的层次严格升序,设带权有向图中有 V V V个点,最多就有 V V V层,所以最多重新分层 V V V次,设每次遍历的边数为 E ( E ≤ 边 总 数 ) E(E\le边总数) E(E),则最后的时间复杂度为 O ( V 2 E ) O(V^2E) O(V2E)

代码实现

bool BFS(int s,int t) {//分层
    memset(d,0,sizeof(d));
    queue<int>q;
    q.push(s);
    d[s]=1;
    while(!q.empty()) {
        int u=q.front();
        q.pop();
        for(int i=head[u]; ~i; i=e[i].next) {
            int v=e[i].to;
            if(!d[v]&&e[i].cap>e[i].flow) {//如果可以增流
                d[v]=d[u]+1;
                q.push(v);
                if(v==t)return 1;
            }
        }
    }
    return 0;
}
int DFS(int u,int flow,int t) {
    if(u==t)return flow;
    int res=flow;//res存储当前节点的可增流值
    for(int i=head[u]; ~i&&res; i=e[i].next) {//遍历满足条件的邻边并增流
        int v=e[i].to;
        if(d[v]==d[u]+1&&e[i].cap>e[i].flow) {
            int k=DFS(v,min(res,e[i].cap-e[i].flow),t);//获得最小的回溯流
            if(!k){d[v]=0;continue;}
            e[i].flow+=k;//获得最小的回溯流后增流
            e[i^1].flow-=k;
            res-=k;//可增流值减少,因为已经有邻边增流
        }
    }
    return flow-res;//返回实际的总增流值
}
int Dinic(int s,int t) {
    int ans=0;//存储最大流
    while(BFS(s,t))ans+=DFS(s,inf,t);
    return ans;
}

结果输出

对于Dinic算法来说,最后一次的循环其实没有进行增流,它只是确定了没有不能再继续增流了,那么所需要的最大流中的所有节点一定被分层了,换言之,如果要输出答案,只需要找到有分层的点即可

当前弧优化

每次增广了一条路之后,由于是最大流,所以这条路必然没有了增广的必要,也没有多余的流量可增广,那么每次扫描的时候可以跳过这些无法增广的边,因此可以记录已经增广到哪条边了,下一次如果碰到同样的节点则直接从这条边开始增广,具体如图,对于节点2,如果2,3和2,4已经增流过了,其实之后的扫描就没有必要再访问了,这个时候如果开一个数组记录对于节点2当前访问的哪条边,这样的话就能减少不必要的扫描
在这里插入图片描述

代码

bool BFS(int s,int t) {//分层
    memset(d,0,sizeof(d));
    for(int i=0; i<=n+1; i++)//复制每个点的head,一定一定要注意节点的个数
        cur[i]=head[i];
    queue<int>q;
    q.push(s);
    d[s]=1;
    while(!q.empty()) {
        int u=q.front();
        q.pop();
        for(int i=head[u]; ~i; i=e[i].next) {
            int v=e[i].to;
            if(!d[v]&&e[i].cap>e[i].flow) {//如果可以增流
                d[v]=d[u]+1;
                q.push(v);
                if(v==t)return 1;
            }
        }
    }
    return 0;
}
int DFS(int u,int flow,int t) {
    if(u==t)return flow;
    int res=flow;//res存储当前节点的可增流值
    for(int i=cur[u]; ~i&&res; i=e[i].next) {//遍历满足条件的邻边并增流
        cur[u]=i;//当前弧优化
        int v=e[i].to;
        if(d[v]==d[u]+1&&e[i].cap>e[i].flow) {
            int k=DFS(v,min(res,e[i].cap-e[i].flow),t);//获得最小的回溯流
            if(!k) {
                d[v]=0;
                continue;
            }
            e[i].flow+=k;//获得最小的回溯流后增流
            e[i^1].flow-=k;
            res-=k;//可增流值减少,因为已经有邻边增流
        }
    }
    return flow-res;//返回实际的总增流值
}
int Dinic(int s,int t) {
    int ans=0;//存储最大流
    while(BFS(s,t))ans+=DFS(s,inf,t);
    return ans;
}

训练

LuoguP3376

题目大意:略

思路:最大流模板题

代码

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N=205;
const int maxn=1e4+10;
const int inf=0x3f3f3f3f;
int head[N],n,m,s,t,cnt,cur[N],d[N];
struct node {
    int to,next,cap,flow;
} e[maxn];
void Add(int from,int to,int cap,int flow) {
    e[cnt].to=to;
    e[cnt].next=head[from];
    e[cnt].cap=cap;
    e[cnt].flow=flow;
    head[from]=cnt++;
}
bool BFS(int s,int t) {//分层
    memset(d,0,sizeof(d));
    for(int i=0; i<=n+1; i++)//复制每个点的head
        cur[i]=head[i];
    queue<int>q;
    q.push(s);
    d[s]=1;
    while(!q.empty()) {
        int u=q.front();
        q.pop();
        for(int i=head[u]; ~i; i=e[i].next) {
            int v=e[i].to;
            if(!d[v]&&e[i].cap>e[i].flow) {//如果可以增流
                d[v]=d[u]+1;
                q.push(v);
                if(v==t)return 1;
            }
        }
    }
    return 0;
}
int DFS(int u,int flow,int t) {
    if(u==t)return flow;
    int res=flow;//res存储当前节点的可增流值
    for(int i=cur[u]; ~i&&res; i=e[i].next) {//遍历满足条件的邻边并增流
        cur[u]=i;//当前弧优化
        int v=e[i].to;
        if(d[v]==d[u]+1&&e[i].cap>e[i].flow) {
            int k=DFS(v,min(res,e[i].cap-e[i].flow),t);//获得最小的回溯流
            if(!k) {
                d[v]=0;
                continue;
            }
            e[i].flow+=k;//获得最小的回溯流后增流
            e[i^1].flow-=k;
            res-=k;//可增流值减少,因为已经有邻边增流
        }
    }
    return flow-res;//返回实际的总增流值
}
int Dinic(int s,int t) {
    int ans=0;//存储最大流
    while(BFS(s,t))ans+=DFS(s,inf,t);
    return ans;
}
signed main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    cin >>n>>m>>s>>t;
    memset(head,-1,sizeof(head));
    while(m--) {
        int u,v,w;
        cin >>u>>v>>w;
        Add(u,v,w,0);
        Add(v,u,0,0);
    }
    cout <<Dinic(s,t);
    return 0;
}

POJ1149

题目大意:M个猪圈,每个猪圈有初始数量,依次来N个人,每个人可以打开指定的猪圈,购买若干头猪,每个人有一个购买上限,每个人购买完后,猪圈不会立刻关上,管理员可以重新分配已打开的猪圈的猪,分配完后关闭猪圈等待下一个人,求出最多能卖出多少猪

思路:可以看到,如果没有购买次序之间的限制,每个猪圈都可以视为源点,客户设置为汇点,那么可以用一个超级汇点作为所有用户最后的汇点,容量为购买数量,在考虑购买次序之间的限制的情况下,设置一个源点,将源点和每个猪圈的第一个人连边,容量为开始时猪圈猪的数量,因为第一个人才能打开这个猪圈,使得猪圈内猪的数量能发生变化,若两个人先后打开一个相同的猪圈,则连边两人编号,容量为无穷大,因为两人能使猪圈内猪的数量变化

代码

#include <iostream>
#include <cstring>
#include <queue>
using namespace std;
const int maxn=1e4;
const int inf=0x3f3f3f3f;
int head[maxn],cnt=0,d[maxn],n,m,init[maxn],last[maxn];
struct node {
    int to,next,cap,flow;
} e[maxn];
void Add(int from,int to,int cap,int flow) {//构造边
    e[cnt].to=to;
    e[cnt].next=head[from];
    e[cnt].cap=cap;
    e[cnt].flow=flow;
    head[from]=cnt++;
}
bool BFS(int s,int t) {//分层
    memset(d,0,sizeof(d));
    queue<int>q;
    q.push(s);
    d[s]=1;
    while(!q.empty()) {
        int u=q.front();
        q.pop();
        for(int i=head[u]; ~i; i=e[i].next) {
            int v=e[i].to;
            if(!d[v]&&e[i].cap>e[i].flow) {//如果可以增流
                d[v]=d[u]+1;
                q.push(v);
                if(v==t)return 1;
            }
        }
    }
    return 0;
}
int DFS(int u,int flow,int t) {
    if(u==t)return flow;
    int res=flow;//res存储当前节点的可增流值
    for(int i=head[u]; ~i&&res; i=e[i].next) {//遍历满足条件的邻边并增流
        int v=e[i].to;
        if(d[v]==d[u]+1&&e[i].cap>e[i].flow) {
            int k=DFS(v,min(res,e[i].cap-e[i].flow),t);//获得最小的回溯流
            if(!k)d[v]=0;
            e[i].flow+=k;//获得最小的回溯流后增流
            e[i^1].flow-=k;
            res-=k;//可增流值减少,因为已经有邻边增流
        }
    }
    return flow-res;//返回实际的总增流值
}
int Dinic(int s,int t) {
    int ans=0;//存储最大流
    while(BFS(s,t))for(int i=1; i<=n; i++)ans+=DFS(s,inf,t);
    return ans;
}
int main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    cin >>m>>n;
    for(int i=1; i<=m; i++)cin >>init[i];
    memset(head,-1,sizeof(head));
    for(int i=1; i<=n; i++) {
        int a,b;
        cin >>a;
        while(a--) {
            int k;
            cin >>k;
            if(last[k]==0) {//第一次访问
                last[k]=i;//记录上一层访问的客户
                Add(0,i,init[k],0);//与源点相连
                Add(i,0,0,0);
            } else {
                Add(last[k],i,inf,0);
                Add(i,last[k],0,0);
                last[k]=i;//更新上一个访问者
            }
        }
        cin >>b;
        Add(i,n+1,b,0);//需求与汇点相连
        Add(n+1,i,0,0);
    }
    cout <<Dinic(0,n+1);
    return 0;
}

POJ1459

题目大意:略

思路:根据给出的条件建立对应的边,输电线直接建边,消费用户与汇点连接,发电厂与源点连接,最后跑最大流即可

代码

#include <iostream>
#include <cstring>
#include <queue>
using namespace std;
const int maxn=3e4;
const int inf=0x3f3f3f3f;
int n,np,nc,m,d[maxn],head[maxn],cnt;
struct node {
    int next,to,cap,flow;
} e[maxn];
void Add(int from,int to,int cap,int flow) {
    e[cnt].to=to;
    e[cnt].next=head[from];
    e[cnt].flow=flow;
    e[cnt].cap=cap;
    head[from]=cnt++;
}
bool BFS(int s,int t) {//分层
    memset(d,0,sizeof(d));
    queue<int>q;
    q.push(s);
    d[s]=1;
    while(!q.empty()) {
        int u=q.front();
        q.pop();
        for(int i=head[u]; ~i; i=e[i].next) {
            int v=e[i].to;
            if(!d[v]&&e[i].cap>e[i].flow) {//如果可以增流
                d[v]=d[u]+1;
                q.push(v);
                if(v==t)return 1;
            }
        }
    }
    return 0;
}
int DFS(int u,int flow,int t) {
    if(u==t)return flow;
    int res=flow;//res存储当前节点的可增流值
    for(int i=head[u]; ~i&&res; i=e[i].next) {//遍历满足条件的邻边并增流
        int v=e[i].to;
        if(d[v]==d[u]+1&&e[i].cap>e[i].flow) {
            int k=DFS(v,min(res,e[i].cap-e[i].flow),t);//获得最小的回溯流
            if(!k)d[v]=0;
            e[i].flow+=k;//获得最小的回溯流后增流
            e[i^1].flow-=k;
            res-=k;//可增流值减少,因为已经有邻边增流
        }
    }
    return flow-res;//返回实际的总增流值
}
int Dinic(int s,int t) {
    int ans=0;//存储最大流
    while(BFS(s,t))for(int i=1; i<=n; i++)ans+=DFS(s,inf,t);
    return ans;
}
int main() {
    while(cin >>n>>np>>nc>>m) {
        memset(head,-1,sizeof(head));
        cnt=0;
        char ch;
        int u,v,z;
        while(m--) {
            cin >>ch>>u>>ch>>v>>ch>>z ;
            Add(u,v,z,0);
            Add(v,u,0,0);
        }
        while(np--) {
            cin >>ch>>u>>ch>>z;
            Add(n+1,u,z,0);
            Add(u,n+1,0,0);
        }
        while(nc--) {
            cin >>ch>>u>>ch>>z;
            Add(u,n+2,z,0);
            Add(n+2,u,0,0);
        }
        cout <<Dinic(n+1,n+2)<<endl;
    }
    return 0;
}

HDU3549

题目大意:给出一个有向带权图,求解最大流

思路:本题是最大流模板题,直接使用即可

代码

#include <bits/stdc++.h>
const int maxn=1e4+10;
const int inf=0x3f3f3f3f;
using namespace std;
int head[maxn],cnt,d[maxn],T,n,m;
bool vis[maxn];
struct node {
    int next,to,cap,flow;//链式前向星,容量和流
} e[maxn];
void Add(int from,int to,int cap,int flow) {
    e[cnt].next=head[from];
    e[cnt].cap=cap;
    e[cnt].flow=flow;
    e[cnt].to=to;
    head[from]=cnt++;
}
bool BFS(int s,int t) {
    memset(d,0,sizeof(d));
    queue<int>q;
    q.push(s);
    d[s]=1;
    while(!q.empty()) {
        int u=q.front();
        q.pop();
        for(int i=head[u]; ~i; i=e[i].next) {
            int v=e[i].to;
            if(d[v]||e[i].cap<=e[i].flow)continue;
            d[v]=d[u]+1;
            q.push(v);
            if(v==t)return 1;
        }
    }
    return 0;
}
int DFS(int u,int flow,int t) {
    if(u==t)return flow;
    int res=flow;
    for(int i=head[u]; ~i&&res; i=e[i].next) {
        int v=e[i].to;
        if(d[v]!=d[u]+1||e[i].cap<=e[i].flow)continue;
        int k=DFS(v,min(res,e[i].cap-e[i].flow),t);
        if(!k)d[v]=0;
        e[i].flow+=k;
        e[i^1].flow-=k;
        res-=k;
    }
    return flow-res;
}
int Dinic(int s,int t) {
    int ans=0;
    while(BFS(s,t))for(int i=1; i<=n; i++)ans+=DFS(s,inf,t);
    return ans;
}
int main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    cin >>T;
    for(int i=1; i<=T; i++) {
        memset(head,-1,sizeof(head));
        cnt=0;
        cin >>n>>m;
        while(m--) {
            int x,y,c;
            cin >>x>>y>>c;
            Add(x,y,c,0);
            Add(y,x,0,0);//存反边,容量和流均为0
        }
        cout <<"Case "<<i<<": ";
        cout <<Dinic(1,n)<<endl;
    }
    return 0;
}

HDU1532

题目大意:略

思路:最大流模板题

代码

#include <bits/stdc++.h>
using namespace std;
const int maxn=1e3;
const int inf=0x3f3f3f3f;
int head[maxn],cnt,d[maxn],n,m;
bool vis[maxn];
struct node {
    int next,to,cap,flow;
} e[maxn];
void Add(int from,int to,int cap,int flow) {
    e[cnt].to=to;
    e[cnt].next=head[from];
    e[cnt].flow=flow;
    e[cnt].cap=cap;
    head[from]=cnt++;
}
bool BFS(int s,int t) {
    memset(d,0,sizeof(d));
    queue<int>q;
    d[s]=1;
    q.push(s);
    while(!q.empty()) {
        int u=q.front();
        q.pop();
        for(int i=head[u]; ~i; i=e[i].next) {
            int v=e[i].to;
            if(d[v]||e[i].cap<=e[i].flow)continue;
            d[v]=d[u]+1;
            q.push(v);
            if(v==t)return 1;
        }
    }
    return 0;
}
int DFS(int u,int flow,int t) {
    if(u==t)return flow;
    int res=flow;
    for(int i=head[u]; ~i&&res; i=e[i].next) {
        int v=e[i].to;
        if(d[v]!=d[u]+1||e[i].cap<=e[i].flow)continue;
        int k=DFS(v,min(res,e[i].cap-e[i].flow),t);
        if(!k)d[v]=0;
        e[i].flow+=k;
        e[i^1].flow-=k;
        res-=k;
    }
    return flow-res;
}
int Dinic(int s,int t) {
    int ans=0;
    while(BFS(s,t))for(int i=1; i<=m; i++)ans+=DFS(s,inf,t);
    return ans;
}
int main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    while(cin >>n>>m) {
        memset(head,-1,sizeof(head));
        cnt=0;
        while(n--) {
            int s,e,c;
            cin >>s>>e>>c;
            Add(s,e,c,0);
            Add(e,s,0,0);
        }
        cout <<Dinic(1,m)<<endl;
    }
    return 0;
}

总结

Dinic算法的时间复杂度与图上的节点有关,以后涉及到图论相关的问题需要考虑是以点为基准还是以边为基准来选择不同的算法,做题的时候才不会做无用功

参考文献

  1. [蒟蒻算法小课堂 3] Dinic算法的基本实现及优化
  2. Dinic当前弧优化 模板及教程
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值