原文
A neural network based multi-state scheduling algorithm for multi-AGV system in FMS
发表于Journal of Manufacturing Systems,二区,机翻,最好配合原文食用
abstract
柔性制造系统(FMS)由于其在灵活性、可维护性和建造成本方面的众多优势,在过去几年里受到了越来越多的关注。AGV运输系统的应用提高了FMS的灵活性,同时也对AGV调度算法提出了更高的要求。本文提出了一种新的AGV多状态调度算法(MSSA),该算法在AGV利用率和FMS总加工时间之间进行了很好的权衡。与经典的空闲调度策略相比,MSSA在每次计算中调度更多agv和任务,使其优化目标更接近全局优化目标。利用神经网络对行程时间进行预测,提高了算法的时间精度。采用5个因素作为神经网络输入,分别表达车辆状态、行驶距离、AGV轨迹和AGV多次碰撞对行驶时间的影响。仿真实验表明,该算法在处理总时间跨度、AGV负荷率、AGV利用率和任务执行时间等方面具有优势。该算法已在实际空调生产线上得到了应用。
2. 问题建模
图1为所研究的FMS模型图。该系统由数控加工机床和多台agv运输系统组成。在信息系统的管理下,该FMS可以加工多种类型的产品。FMS的目标是尽快处理尽可能多的产品。为了实现这一目标,加工线上的每台机器都将被最大限度地利用,这意味着机器的闲置时间必须最小化。因此,对于物料搬运系统来说,目标是将半成品尽快运到机器上。AGV作为一种主要的交通工具,广泛应用于许多自动化的FMSs中。设计一个有效的调度AGV算法关系到整个FMS的效率。在本节中,我们首先提供了所研究的FMS的详细描述,随后建立了自动FMS中AGV调度问题的数学模型。
2.1. 所研究的FMS的布局
本文研究的FMS包括两条生产线,每条生产线有19台机器。在这个FMS中,总共有38台加工机。模型图的详细布局如图2所示。在这个FMS中,两条加工线被中路分隔成上下两部分。
这个FMS是一个流水车间,原料需要每台机器加工一次。这些机器一次只能加工一件半成品。因此,为了得到一件产品,一种原料需要经过19道加工工序(一台机器一道工序)。生成运输任务,将半成品从前一台机器运输到下一台机器,这两者都在同一加工线上。
2.2. 数学模型
表示法见表1。
FMS的最终目标是用最少的时间处理产品。由于原材料要经过每台机器的机械加工才能成为产品,最后一台机器获得的半成品就是最终产品。本文主要研究AGV调度问题,而不是作业调度问题和工人调度问题。因此,假设如下。
假设1:每台机器加工半成品的时间是固定的。每个产品的加工顺序是固定的,相同的。
根据假设1,为了使整条加工线的总制造跨度最小,完成所有运输任务的时间应尽可能小。该优化目标如式(1)所示。
根据实际生产情况,提出以下假设:
假设2:AGV在运输产品时等待会导致能源浪费和安全隐患,需要避免。因此,在目标机器没有产品之前,运输任务不能启动。
假设3:每辆AGV装载和卸载的时间是固定的,是相同的。
计算模型的优化目标如式(1),则模型的约束条件为:
其中,X(Ri,Tj)为决策变量,决定是否将运输任务Tj分配给AGV Ri。