【JAVA实现】层次聚类算法

本文介绍了层次聚类算法在机器学习中的应用,重点讲述了作为无监督学习的层次聚类中的合并法,并提供了算法实现过程。通过示例数据集展示了算法运行结果,同时讨论了算法的效率问题和样本点再分配问题。最后提到了层次聚类与K-means等划分式聚类结合的改进方法,如BIRCH算法。
摘要由CSDN通过智能技术生成

       聚类算法属于机器学习中一种无监督学习算法。聚类方法一般可以分为层次聚类与非层次聚类两种。其中层次聚类算法又可以分为合并法与分解法;同样非层次聚类算法也可以分为多种,常用的有K-means算法。这篇博客先来实现层次聚类算法中的合并法,我会在下一篇博文中讲述K-means算法。

       其中,合并法是指:初始阶段,将每个样本点当做其类簇,然后合并这些原子类簇直至达到预期的类簇数或者其他终止条件。

算法实现:

       输入: K:目标类簇数D:样本点集合

       输出:K个类簇集合

方法:

       1)将D中各个样本点当做类簇集合

       2)repeat

       3) 找到分属两个不同类簇,且距离最近的样本点对

       4) 将两个类簇合并

       5) util 类簇数=K


       下面,我将用如下数据集作做测试:

A 2 3
B 2 7
C 1 2
D 1 6
E 2 1
F 3 5
G 8 5
H 9 6
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值