最优二叉查找树

问题描述(详见算法导论P212-P213)

对于给定关键字序列,构造一颗最优的二叉查找树T,使得在T内的一次搜索的期望代价最小


前提概念

  • 一颗最优二叉树不一定是一颗整体高度最小的树;也不一定总把具有最大概率的关键字作为根节点
  • 二叉查找树的子树必定包含连续范围内的关键字
  • 当一颗树成为一个节点的子树时,它的期望代价增加值为该树中所有概率的总和
最优子结构
设包含有序关键字(ki, ..., kj)的最优二叉查找树以kr(i≤r≤j)为根节点,则其左子树(ki, ..., kr-1)和右子树(kr+1, ..., kj)也同样为最优二叉查找树

递归表达式
作如下定义
  • 给定一个由n个互异关键字(k1, ..., kn)组成的序列K,且关键字有序(k1<...<kn)。对每个关键字ki,一次搜索为ki的概率是pi。某些搜索值可能不在K内,因此还有n+1个”虚拟键“d0, d1, ..., dn代表不在K内的值,且ki≤di≤ki+1,di概率为qi
  • e[i, j]:最优二叉查找树(ki, ..., kj)的期望代价
  • w[i, j]:最优二叉查找树(ki, ..., kj)的概率总和,即∑p+∑q(p:i~j q:i-1~j)
  • root[i, j]:记录最优二叉查找树(ki, ..., kj)的根节点的序号,用于构造问题最优解
  • 当j=i-1时,表示只有虚拟键di-1,此时e[i, i-1] = w[i, i-1] = qi
递归表达式如下(推导过程见算法导论P214-P215)


自底向上的求解
求解过程类似于矩阵链乘法问题

构造最优解
根据矩阵ROOT中记录的值进行构造

1,问题描述:给定一个有序序列K={k1<k2<k3<,……,<kn}和他们被查询的概率P={p1,p2,p3,……,pn},要求构造一棵二叉查找树T,使得查询所有元素的总的代价最小。对于一个搜索树,当搜索的元素在树内时,表示搜索成功。当不在树内时,表示搜索失败,用一个“虚叶子节点”来标示搜索失败的情况,因此需要n+1个虚叶子节点{d0<d1<……<dn}。其中d0表示搜索元素小于k1的失败结果,dn表示搜索元素大于kn的失败情况。di(0<i<n)表示搜索节点在ki和k(i+1)之间时的失败情况。对于应di的概率序列是Q={q0,q1,……,qn}。

2,问题分析:

在二叉树中T内搜索一次的期望代价为:

E[T]=(depth(ki)+1)*pi  //对每个i=1~n,搜索成功情况

        +(depth(di)+1)*qi //对每个i=0~n,搜索失败情况

3,问题求解:动态规划

步骤一:寻找最优子结构。

一个最优二叉树的子树必定包含连续范围的关键字ki~kj,1<=i<=j<=n,同时也必须含有连续的虚叶子节点di-1~dj。

如果一棵最优二叉查找树T有一棵含有关键字ki~kj的子树T',那么,T'也是一棵最优查找树,这通过剪贴思想可以证明。

现在开始构造最优子结构:在ki~kj中,选定一个r,i<=r<=j,使以kr为根,ki~k(r-1)和k(r+1)~kj为左右孩子的最优二叉树。注意r=i或者r=j的情况,表示左子树或右子树只有虚叶子节点。

步骤二:一个递归解。

定义e[i,j]为一棵包含关键字ki~kj的最优二叉树的期望代价。当j=i-1时没有真实的关键在,只有虚叶子节点d(i-1)。

于是:

当j=i-1时,e[i,i-1]=q(i-1)。

当j>=i时,需要选择合适的kr作为根节点,然后其余节点ki~K(r-1)和k(r+1)~kj构造左右孩子。这时要考虑左右孩子这些节点成为一个节点的子树后,它的搜索代价的变化:根据E[T]的计算,得知它们的期望代价增加了“子树中所有概率的总和”w。

w[i,j]=pl // 对每个l=i~j

         +ql //对每个l=i-1~j

于是当j>=i时,e[i,j]=pr + (e[i,r-1]+w[i,r-1])+(e[r+1,j]+w[r+1,j]) = e[i,r-1] + e[r+1,j]+w[i,j];

步骤三:计算最优二叉树的期望代价

 

e[i,j]= q(i-1)  //如果j=i-1

          min(e[i,r-1] + e[r+1,j]+w[i,j]),如果i<=j,其中i<=r<=j

w[i,j] = q(i-1) 如果j=i-1

          w[i,j]=w[i,j-1]+pj+qj 如果i<=j


#include <iostream>
#define MAXNUM 100
#define MAX 65536
using namespace std;

//p中为有序关键字k1到k5的搜索概率,k1<k2<k3<k4<k5
double p[MAXNUM] = {0.00, 0.15, 0.10, 0.05, 0.10, 0.20};
double q[MAXNUM] = {0.05, 0.10, 0.05, 0.05, 0.05, 0.10};
void optimal_bst(double e[][MAXNUM], int root[][MAXNUM], double w[][MAXNUM], int n)
{
    int i = 0, j = 0;
    //针对左或右孩子为空树情况初始化
    for(i = 1; i <= n + 1; i++)
    {
        e[i][i - 1] = q[i - 1];
        w[i][i - 1] = q[i - 1];
    }
    int l = 0;
    /*计算顺序如下:根据计算式:e[i,j] = e[i,r-1]+e[r+1,j
      首先计算节点个数为1的最优二叉树的代价e[1,1],e[2,2]……
      接着计算节点个数为1的最优二叉树的代价e[1,2],e[2,3]……
      ……
      最后计算结点个数为n的最优二叉树的代价e[1,n],利用之前保存的较少结点最优二叉树的结果.*/
    for(l = 1; l <= n; l++)
    {
        for(i = 1; i <= n - l + 1; i++)
        {
            j = i + l - 1;
            e[i][j] = MAX;
            w[i][j] = w[i][j - 1] + p[j] + q[j];
            for(int r = i; r <= j; r++)
            {
                double t = 0;
                t = e[i][r - 1] + e[r + 1][j] + w[i][j];
                if(t < e[i][j])
                {
                    e[i][j] = t;
                    root[i][j] = t;
                }
            }
        }
    }
}

int main()
{
    double e[MAXNUM][MAXNUM];
    int root[MAXNUM][MAXNUM];
    double w[MAXNUM][MAXNUM];

    optimal_bst(e, root, w, 5);

    for(int i = 1; i <= 6; i++)
    {
        for(int j = 0; j <= 5; j++)
        {
            cout << e[i][j] << "  ";
        }
        cout << endl;
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值