pytorch:参数pin_memory=True和non_blocking=True的作用

一、pin_memory

pin_memory是dataloader()的参数,默认值为False,其作用是是否把把数据存放在锁页内存中。主机的内存根据物理内存(内存条)与虚拟内存(硬盘)进行数据交换分为锁页内存和不锁页内存:

锁页内存:数据存放在物理内存上(内存条)上;
不锁页内存:当物理内存(内存条)满载时,把部分数据转换到虚拟内存上(硬盘)上。
锁页内存(pin_memory)能够保持与GPU进行高速传输,在训练时加快数据的读取,从而加快训练速度。因此,如果主机/服务器的内存足够大,建议把pin_memory设为True,如:

trainloader = torch.utils.data.DataLoader(dataset=traindata, batch_size=BATCH_SIZE, shuffle=True, num_workers=1, pin_memory=True)

二、non_blocking

non_blocking时cuda()的参数,默认值为False,其作用和pin_memory一样,pin_memory是针对物理内存(内存条),而non_blocking是针对GPU上的内存(显存),表士把数据锁页在显存上,在后台进程过程中不释放。一般地,如果pin_momery为True,把non_blocking也设为True,有助于加速数据传输,加快训练过程,如:

model = Model().cuda(non_blocking=True)
详细介绍以及有错误地方'''Training script. ''' import os from tqdm import tqdm import torch import torch.nn as nn from torch.utils.data import DataLoader from torch.optim import Adam, lr_scheduler from torchsummary import summary from torchvision import transforms import torch.distributed as dist import torch.multiprocessing as mp from models.resnet50 import ResNet50 from runtime_args import args from load_dataset import LoadDataset from plot import plot_loss_acc from helpers import calculate_accuracy device = torch.device("cuda:0" if torch.cuda.is_available() and args.device == 'gpu' else 'cpu') if not os.path.exists(args.graphs_folder) : os.mkdir(args.graphs_folder) model_save_folder = 'resnet_cbam/' if args.use_cbam else 'resnet/' if not os.path.exists(model_save_folder) : os.mkdir(model_save_folder) def train(gpu, args): '''Init models and dataloaders and train/validate model. ''' rank = args.rank * args.gpus + gpu world_size = args.gpus * args.nodes dist.init_process_group(backend='nccl', init_method='env://', world_size=world_size, rank=rank) model = ResNet50(image_depth=args.img_depth, num_classes=args.num_classes, use_cbam=args.use_cbam) torch.cuda.set_device(gpu) model.cuda(gpu) optimizer = Adam(model.parameters(), lr=args.learning_rate) lr_decay = lr_scheduler.ExponentialLR(optimizer, gamma=args.decay_rate) criterion = torch.nn.CrossEntropyLoss().cuda(gpu) summary(model, (3, 224, 224)) model = nn.parallel.DistributedDataParallel(model, device_ids=[gpu]) train_dataset = LoadDataset(dataset_folder_path=args.data_folder, image_size=args.img_size, image_depth=args.img_depth, train=True, transform=transforms.ToTensor()) test_dataset = LoadDataset(dataset_folder_path=args.data_folder, image_size=args.img_size, image_depth=args.img_depth, train=False, transform=transforms.ToTensor()) train_sampler = torch.utils.data.distributed.Distri
最新发布
03-12
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值