- 博客(767)
- 收藏
- 关注
原创 huggingface_hub.errors.LocalEntryNotFoundError: An error happened while trying to locate the file on
huggingface_hub.errors.LocalEntryNotFoundError: An error happened while trying to locate the file on the Hub and we cannot find the requested files in the local cache. Please check your connection and try again or make sure your Internet connection is on.【
2025-05-20 16:58:18
99
原创 自注意力(Self-Attention)和交叉注意力(Cross-Attention)
• 在跨模态任务(如图文生成)中,可让Key/Value来自图像特征,Query来自文本。通过合理结合这两种注意力机制,模型能够同时理解序列内部结构并实现跨序列的信息对齐。• 通过掩码(Masking)控制解码器只能访问已生成的位置。建立两个不同序列之间的关联关系,实现跨模态或跨序列信息融合。分析同一序列内部元素之间的依赖关系,捕捉长距离上下文信息。• Transformer解码器中的编码器-解码器注意力层。• Transformer编码器和解码器的自注意力层。• 交叉注意力会让模型关注英文原句中的。
2025-05-20 12:57:45
211
原创 删除 Git 分支下的所有内容(包括提交历史和文件)
方案四:彻底抹除分支历史(重写 Git 记录)方案三:重置分支为初始状态(高危操作!• 团队协作场景 → 优先使用方案一。方案一:删除分支本身(保留主分支)方案二:清空分支内容(保留空分支)• 完全重新初始化 → 方案三。• 仅清理文件 → 方案二。
2025-05-20 09:57:22
149
原创 OSError: [Errno 5] Input/output error
当然,导致该bug的原因有很多,网上有说是死锁、dataloader的num_workers设的超过0、关闭了命令行串口导致stdin/stdout无法输出等等说法,但不是导致本人出现该bug的原因。本人遇到此bug的原因是设备的IO操作过于饱和,可以用iostat进行设备io操作负载监控,看看设不是该原因导致的。建议:分散IO操作。
2025-05-19 17:49:59
70
原创 在Ubuntu系统中查看不同挂载区的I/O读写速度
通过以上方法,可以精准定位不同挂载区的I/O性能特征。对于关键业务系统,建议定期执行压力测试并建立性能基线。• FSTYPE:文件系统类型(ext4/xfs/nfs等)• ROTA=0:固态硬盘(SSD/NVMe)• ROTA=1:机械硬盘(HDD)> 10ms 表明I/O延迟过高。> 90% 表示设备饱和。显示设备实际响应时间。
2025-05-19 16:22:11
491
原创 CUDA reserved but unallocated memory is large
• 调参建议:根据任务中最大张量尺寸调整(如训练中最大 Batch 的 Tensor 大小)。• 适用场景:需要频繁分配/释放不同大小张量的任务(如动态图结构、可变长度输入)。• 副作用:可能略微增加内存开销(约 10%),但能显著降低 OOM 风险。• 原理:允许 PyTorch 分配可扩展的内存段,减少碎片化。注意力(Transformer 类模型)若问题仍未解决,可调整内存分配器的。• 监控方法:运行后观察。(2) 及时释放无用张量。(2) 梯度检查点技术。(1) 检测内存泄漏。
2025-05-18 22:17:36
242
原创 RTX 3090、RTX 4090、RTX 3090 Ti、A100、H100 等型号GPU
以下是主流消费级及数据中心级 GPU 的算力、显存及关键特性对比,涵盖 RTX 3090、RTX 4090、RTX 3090 Ti、A100、H100 等型号。• RTX 4090 的 24GB 显存可运行 Llama 3-70B 4-bit 量化版,但 A100/H100 的 80GB 显存支持全精度训练。• A100/H100 的 HBM 显存带宽(2-3 TB/s)远超消费级 GDDR6X(1 TB/s),适合处理超大规模数据。• Ampere (RTX 30系/A100):成熟生态,兼容性更好。
2025-05-18 19:35:46
762
原创 GPU T4 x2(双卡)、GPU P100 和 TPU VM v3-8性能对比
• 优势:专为大规模训练设计,BF16/FP16混合精度性能极强(适合LLM、Transformer等模型),内存带宽高(128GB HBM)。• 优势:FP32性能优于T4,适合中等规模的PyTorch/TensorFlow训练(尤其是需要高精度计算的场景)。• 限制:仅支持 TensorFlow/JAX/PyTorch(XLA)等框架,且需适配TPU代码(如使用。• TPU的使用成本:TPU按核心计费,v3-8相当于8个TPU核心,成本可能高于GPU。优化,实际效率可能低于单卡P100。
2025-05-18 19:31:33
502
原创 ubuntu加密压缩
• 执行命令后会提示输入加密密码(密码需输入两次确认)。若需要更强的 AES 加密,可以使用。• 此方法支持自定义加密算法,安全性更高。在 Ubuntu 系统中,可以使用。: 加密文件名(可选,增强安全性)。• 解压时会提示输入加密密码。: 递归压缩目录及其子内容。: 设置密码(会提示输入)。加密压缩(AES-256)解压加密 ZIP 文件。加密压缩文件/文件夹。解压加密的 7z 文件。会提示输入加密密码。
2025-05-18 16:54:22
356
原创 windows10无法打开文件管理
我突然发现,只要onedrive启动在后台运行后,我的文件资源管理系统操作起来就会很卡,以至于遇到这种连点击操作都无法进行的情况。暂时我只能选择放弃使用onedrive了,打算考虑别的同步盘(例如百度网盘、阿里云盘啥的),反正onedrive我是不敢用了。win10系统,win + E可以打开文件管理界面,但打开文件管理界面后无法进行任何点击操作、点击超过2次,系统的文件系统就会崩溃,然后系统文件系统重新启动。吐槽下,微软你自家的onedrive居然还和自家系统的文件资源管理打架,我也是服了。
2025-05-18 14:35:53
360
原创 在 Ubuntu 系统中监控 I/O 使用状态
通过这些工具,可以快速识别磁盘 I/O 瓶颈、定位异常进程,并优化存储性能。• 用途:查看磁盘整体读写速率、I/O 请求队列和 CPU 等待时间。• 用途:测量磁盘的单次 I/O 请求延迟(类似网络 ping)。• 用途:监控系统整体 I/O、内存、CPU 和上下文切换。• 用途:高级工具,追踪块设备 I/O 请求的完整生命周期。• 用途:同时监控 CPU、内存、网络和磁盘 I/O。• 用途:记录和回溯历史 I/O 数据(需启用。• 找到读写量异常的进程 PID。,按进程实时显示磁盘读写活动。
2025-05-14 18:08:51
343
原创 【经验总结】ubuntu 20.04 git 上传本地文件给 github,并解决出现的问题
ubuntu 20.04 git 上传本地文件给 github,并解决出现的问题_ubuntu如何提交github项目鉴权失败。【经验总结】ubuntu 20.04 git 上传本地文件给 github,并解决出现的问题_ubuntu如何提交github项目鉴权失败-CSDN博客。
2025-05-13 16:55:53
146
原创 多视图对比学习中的正样本和负样本举例
• 排除自身的影响:对比学习需避免特征与自身的无意义对比(如计算相似度),因此总对数需减 1(排除。是唯一能全面覆盖多视图对比需求(跨视图、跨样本)且排除自身冗余的合理设计。• 负对的定义:负对是所有其他样本的特征(无论是否同一视图)。• 正对的定义:正对是同一样本在不同视图中的特征。确保了每个特征与其他所有视图和样本的特征充分对比,而。完整覆盖了所有视图和样本的交互,同时避免自身对比。• 多视图与样本的全局覆盖:在多视图场景中,共有。,需要与所有其他视图和样本的特征进行比较。个视图,每个视图包含。
2025-05-12 16:45:26
574
原创 Europarl数据集
Europarl作为多语言政治领域文本的黄金标准,是机器翻译研究的基石数据集,尤其适合欧洲语言相关的模型训练与分析。• Europarl Corpus V7/V10:包含更多语言对(如中欧、东欧语言)。• 句子对齐:行号对应不同语言的同一句子(如第5行德语对应第5行英语)。• 低资源语言翻译:利用高资源语言(如英语)辅助训练小语种翻译模型。• 多语言预训练:为BERT、mBERT等模型提供多语言监督信号。• 多语言覆盖:包含英语、法语、德语、西班牙语等20+欧洲语言。
2025-05-11 20:01:51
904
原创 对比学习(Contrastive Learning)
对比学习(Contrastive Learning)的核心目标是通过学习数据的表征,使得相似的样本(正样本对)在表征空间中彼此接近,而不相似的样本(负样本对)彼此远离。• 假负样本(False Negatives):避免将潜在正样本误判为负样本(如跨类别的语义相似样本)。• 正样本对:来自同一数据的不同增强视图(如图像旋转、裁剪)或语义相似的样本(如相同类别的数据)。• 目标:通过优化损失函数,最大化正样本对的相似度,最小化负样本对的相似度。• 负样本对:来自不同数据的样本(如不同类别的数据)。
2025-05-10 14:39:46
512
原创 深度学习常见任务类别
以上任务体系覆盖了深度学习的核心应用方向,实际应用中常存在多任务联合学习(如目标检测+跟踪)或跨领域任务融合(视觉-语言多模态任务)。随着技术发展,新任务类型仍在持续涌现(如2023年爆火的Prompt Engineering可视为新型任务设计范式)。二、自然语言处理任务。
2025-05-08 19:30:44
332
原创 BDGP、CCV、MNIST_USPS、Fashion、Caltech数据集
网络图片爬取与人工筛选,类别数量不同(Caltech-101有101类,Caltech-256扩展至256类)。图像数据为多通道(RGB)显微镜图像,分辨率较高(如1024x1024),包含胚胎不同切面的二维或三维图像。视频级多标签分类(20个类别,如“篮球”“生日聚会”),部分任务涉及时序动作定位。28x28像素灰度图,60k训练 + 10k测试,结构与MNIST相同。像素级标签(语义分割),标注基因表达的特定区域(如细胞核、细胞膜等)。MNIST(手写数字)和USPS(美国邮政手写数字)的跨域组合。
2025-05-08 19:02:33
597
原创 TabError: inconsistent use of tabs and spaces in indentation
这个错误是由于在同一个代码块中混合使用了制表符(Tab)和空格(Space)导致的。在Python中,缩进必须统一使用一种方式。在代码编辑器中启用 “显示空白字符” 功能(如VSCode的。),确保所有缩进符统一显示为小点(空格)或箭头(制表符)。统一改为4个空格缩进(Python官方推荐使用空格)
2025-05-08 13:35:14
149
原创 from joblib import Parallel, delayed
是 Python 中用于轻量级并行计算的库,特别适合处理需要重复执行的任务(如批量处理文件、参数扫描等)。将普通函数包装为“延迟任务”,生成一个待执行的任务队列。):适合I/O密集型任务,但受Python全局解释器锁(GIL)限制,无法加速CPU计算。避免共享内存:多进程间无法直接共享内存,需通过进程间通信(IPC)传递数据。• 批量文件处理:并行读取、处理、保存多个文件。• 数值模拟:并行计算不同参数下的物理仿真结果。控制并行任务的分发和执行,管理进程池或线程池。的组合可以实现多进程/多线程并行加速。
2025-05-08 10:53:52
241
原创 Open3D点云处理的基础工作流
这些函数构成了Open3D点云处理的基础工作流,涵盖数据加载、结构构建、邻域分析和结果保存等关键环节。• .ply, .pcd, .xyz, .xyzrgb等。• 支持多种近邻搜索方法(KNN、半径搜索、混合搜索)• 实现Numpy与Open3D数据格式的转换。• Open3D操作需要特定数据结构。:是否ASCII编码(默认二进制)• 构建点云数据的KD树索引。:需要返回的最近邻数量。:查询点(三维坐标)
2025-05-08 10:40:19
141
原创 常见点云与Radar库及处理方法
• PointNet/PointNet++:直接处理无序点云(分类、分割)。• 实时性要求高:优先选择Open3D或PyTorch3D(GPU加速)。• 点云生成:通过峰值检测和CFAR(恒虚警率)算法提取目标点。• 雷达+LiDAR:互补使用(雷达测速、LiDAR测距)。• 去畸变:针对激光雷达运动畸变的校正(如LOAM算法)。• 关键点检测:提取特征点(如ISS、Harris3D)。• 多模态融合(结合LiDAR点云和雷达速度信息)。• NDT(正态分布变换):适用于大范围点云配准。
2025-05-08 10:14:33
504
原创 点云背景过滤
• 深度学习模型选择:轻量级模型(如PointNet++)适合实时场景,大模型(如KPConv)适合高精度需求。原理:训练神经网络(如PointNet、RandLA-Net)直接预测每个点的类别标签(如背景/前景)。• 自动驾驶:去除地面、植被、远处建筑物等背景,保留车辆、行人、障碍物。6. 内点检测:统计所有点到该平面的距离小于阈值(如0.1m)的点数。通过拟合地面平面(如RANSAC算法)或设定高度阈值,移除地面点。原理:利用点云的空间分布特性(如高度、平面性)分离背景。
2025-05-08 10:03:59
779
原创 点云构建KD树
KD树(k-dimensional tree)是一种用于高效组织多维空间数据的二叉树结构,常用于点云的快速搜索(如最近邻查询、范围查询)。其核心思想是递归地将空间划分为超立方体区域,每次划分沿某一坐标轴进行,交替选择分割维度。
2025-05-08 09:50:05
344
原创 Open3D(o3d)KD树
KD树(K-Dimensional Tree) 是一种二叉树结构,用于对k维空间中的点进行组织,以便快速进行范围搜索、最近邻搜索等操作。在三维点云处理中(k=3),KD树通过递归地将空间划分为超平面(hyperplanes),从而加速后续的查询操作。类实现KD树,该类封装了FLANN库(Fast Library for Approximate Nearest Neighbors),支持高效的近似最近邻搜索。• GPU加速:结合CUDA实现(需自定义扩展)。• FLANN参数调整:通过调整树的数量(
2025-05-08 09:19:58
276
原创 F.interpolate(image_features_layer1, scale_factor=8, mode=‘bilinear‘)
进行上采样,将其高度和宽度放大 8 倍,并使用双线性插值(Bilinear Interpolation)算法填充新增的像素值。在分割网络(如 U-Net、FPN)中,深层特征图(分辨率低但语义强)需要上采样后与浅层特征图(分辨率高但细节弱)融合。• 根据周围 4 个最近的真实像素(左上、右上、左下、右下),计算加权平均值,权重由距离决定。用于调整张量(Tensor)空间尺寸的操作,具体作用是对输入的特征图。,则角点像素严格对齐,适合需要几何一致性的任务(如分割)。)被放大 8 倍,例如输入。
2025-05-07 20:14:23
367
原创 unassuming翻译
选择「简洁型 Transformer 模块」能在技术文档中平衡准确性与可读性,建议优先采用。若需强调模块的基础性,可换用「基础」一词。
2025-05-07 19:49:25
202
原创 PLY文件、BEV直方图(Bird’s Eye View Histogram)
BEV直方图将三维环境数据(如激光雷达点云)投影到二维鸟瞰视角,统计不同区域的特定特征(如高度、密度)。两者分别服务于三维数据的精确存储与高效环境分析,是不同阶段(数据存储 vs. 实时处理)的关键技术。• 数据部分:记录顶点坐标、面片连接关系,可选颜色、法线、纹理等属性。• 几何存储:保存点云、多边形网格(如三角形、四边形)。• 属性扩展:支持附加数据(颜色、透明度、法线向量)。• 头部:定义数据类型、属性和元素(如顶点、面片)。• 无人机测绘:地形特征分析(如植被密度统计)。
2025-05-07 17:12:35
353
原创 周期性余弦衰减学习率调度器(CyclicCosineDecayLR)
该调度器结合了 学习率热身(Warmup)、余弦衰减 和 周期性重启 机制,旨在提升模型训练效果。• 细节:初始衰减阶段(15 epoch)后,每隔 10 个 epoch 将学习率重置为。通过这种设计,模型能够在训练过程中平衡探索(高学习率)与收敛(低学习率),提升泛化性能。• 周期性重启:通过周期性重置学习率,使模型跳出局部最优,探索更佳参数空间。• 热身阶段:避免初始学习率过大,稳定训练初期。• 功能:学习率重启周期的 epoch 数。• 功能:学习率热身阶段的 epoch 数。
2025-05-07 16:09:53
455
原创 torch.nn.functional.one_hot、torchvision.ops.sigmoid_focal_loss
• One-Hot编码转换:将离散的类别索引转换为二进制向量形式,其中对应类别位置为1,其余为0。• 单标签但类别不平衡:通过Sigmoid独立处理每个类别,避免Softmax的归一化影响。• 解决类别不平衡:通过动态调整难易样本的权重,改善模型对少数类的学习。• 多标签分类:每个样本可同时属于多个类别(如目标检测中的多个物体)。• 当模型输出为每个类别的独立概率时(如多标签分类)。• γ(gamma):抑制易分类样本的损失(默认2)。• α(alpha):平衡正负样本(默认0.25)。
2025-05-07 15:30:34
155
原创 python利用train_test_split进行训练集、验证集、测试集的随机划分
python利用train_test_split进行训练集、验证集、测试集的随机划分_python 训练集和验证集划分-CSDN博客。
2025-05-07 09:08:23
209
原创 StepLR 学习率调度器
越小 → 每次调整时学习率 下降幅度越大 → 整体学习率下降更快。越大 → 每次调整时学习率 下降幅度越小 → 整体学习率下降更慢。• 定义:触发学习率调整的 周期间隔(以训练轮次。• 模型已接近收敛:需要快速降低学习率以精细调参。• 下降速度定义:学习率每次调整时的 衰减幅度。越小,学习率下降得越快。• 平稳优化过程:减少学习率突变带来的震荡。• 定义:学习率调整的 乘法衰减因子。• 每次触发调整时,当前学习率会乘以。• 在训练初期保持较高学习率快速收敛。• 训练初期:保持较高学习率加速收敛。
2025-05-06 22:48:52
494
原创 不同Dropout位置的对比
LayerNorm在Dropout前,归一化不受随机丢弃影响,梯度更新更稳定。Dropout在LayerNorm前,破坏输入分布统计量(均值/方差)Dropout在归一化后但在激活前,保留大部分统计特性。• 选择片段2:数据质量差/需要强正则化的低资源场景。• 优先片段1:当追求最佳模型精度且计算资源充足时。• 考虑片段3:需要精细控制特征分布的研究性任务。对已激活的特征进行随机丢弃,抑制神经元协同适应。在原始特征空间直接丢弃,增强模型鲁棒性。Dropout较早减少后续计算量。需在归一化后重新缩放特征。
2025-05-06 22:39:23
567
原创 主流大语言“推理模型”深度评测:ChatGPT vs Grok3 vs Claude3.7 vs Deepseek-R1 vs Gemini 2.0 Pro
主流大语言“推理模型”深度评测:ChatGPT vs Grok3 vs Claude3.7 vs Deepseek-R1 vs Gemini 2.0 Pro - 渗透智能。DeepSeek、Grok、ChatGPT4.5和Gemini四大AI模型深度解析:谁才是你的最佳助手_chatgpt4.5和deepseek-CSDN博客。AI 之巅:DeepSeek、Grok3、GPT-4、Claude 3.5 终极对决!
2025-05-06 22:22:53
663
原创 Adam和AdamW
• Adam:把"体重控制"(权重衰减)和"运动计划"(梯度更新)混在一起制定,可能导致健身效果不可控。• AdamW:先制定"运动计划",再单独规划"饮食控制"(权重衰减),两者互不干扰。• 事实:当从Adam切换到AdamW时,通常需要增大权重衰减系数3-10倍。• 事实:AdamW改变了优化问题的数学形式,更适合现代深度学习模型。• 事实:在需要强耦合更新的场景(如GAN),传统Adam可能更合适。• NLP任务:必须使用AdamW(对正则化敏感)误区:AdamW只是Adam的简单改进。
2025-05-06 14:54:31
458
原创 常用预训练模型下载地址
https://github.com/pytorch/vision/tree/master/torchvision/models 几乎所有的常用预训练模型都在这里面 总结下各种模型的下载地址: 1 Resnet: 2 3 model_urls = { 4 'resnet18': &#常用预训练模型下载地址 - Parallax - 博客园。
2025-05-05 11:15:16
185
原创 .off文件格式
off(Object File Format)是一种描述三维多边形网格模型的文本文件格式,主要用于存储三维物体的几何结构和拓扑信息。• 每行一个顶点:提供顶点坐标(XYZ),扩展格式可包含颜色(RGB)或法向量(N)。• 顶点数量:面的顶点数(如3表示三角形,4表示四边形)。• 颜色选项:可选附加属性(面颜色,仅COFF支持)。• 处理:确保索引值与顶点列表的从0开始计数一致。• 可扩展性:支持颜色、法向量等附加属性。• 原因:顶点索引从1开始(应为0开始)。• 每行一个面:定义面的顶点索引。
2025-05-02 12:55:41
534
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人