自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(900)
  • 收藏
  • 关注

原创 Wilcoxon符号秩检验

用途:比较两个相关样本或单个样本的中位数。地位:配对t检验的非参数替代品。优点:不要求数据服从正态分布,对小样本和偏态数据稳健。缺点:如果参数检验的条件确实满足,非参数检验的统计功效通常会稍低一些(即更不容易检测出真实存在的差异)。注意:它检验的是分布的位置(特别是中位数),但前提是假设两个样本的分布形状大致相同。它本质上检验的是差值的分布是否关于0对称。

2025-11-22 15:37:48 59

原创 Granger因果性(格兰杰因果性)

格兰杰因果性是一个用于分析时间序列数据之间领先-滞后关系的统计概念。它的核心思想是:如果变量 X 的过去值能够帮助预测变量 Y 的当前值,并且在包含了 Y 自身过去值的基础上,这种预测能力具有统计上的显著改善,那么我们就说“X 格兰杰引起 Y”。格兰杰因果性不等于真正的因果性。它本质上衡量的是预测能力和时间上的先后顺序,而非哲学或物理上的因果关系。特征描述本质一种基于预测的统计关系,衡量时间上的领先与滞后。核心问题“X 的过去值是否包含了预测 Y 未来值的独特信息?它是什么一种有用的计量经济学工具。

2025-11-22 10:47:08 66

原创 Git 上传超过最大尺寸限制

当 Git 上传超过最大尺寸限制时,通常是因为仓库中有大文件或历史提交中包含大文件。

2025-11-22 09:04:27 38

原创 解决 GitHub “Permission Denied (publickey)“ 错误

当尝试通过 SSH 连接 GitHub 仓库时,出现 git@github.com: permission denied (publickey) 错误,通常是由于 SSH 密钥未正确配置或未添加到 GitHub 账户。登录 GitHub,进入 Settings > SSH and GPG keys,点击 New SSH key,粘贴公钥并保存。按提示操作,默认保存路径为 ~/.ssh/id_rsa。完成以上步骤后,应该能够正常访问和操作远程仓库。2. 添加 SSH 密钥到 SSH 代理。

2025-11-22 08:46:32 201

原创 TS2Vec

对比学习通用概念在TS2Vec中的具体实现正样本同一时间点在两个随机增强视图下的表示。负样本同一序列内不同时间点、或同一批次内不同序列的表示。编码器您材料中所示的,用于提取多层次特征。目标学习一个表示空间,其中相似(上下文相近)的点靠近,不相似的点远离。之后,开发者在这个预训练好的、冻结的(或不冻结的)编码器后面,加了一个简单的Linear层作为regressor,来适应具体的下游任务(比如7分类任务)。这是一种非常典型的“预训练-微调”范式,而其中的预训练阶段就是通过对比学习完成的。

2025-11-17 09:01:23 423

原创 禁用Trae(1.4.9)自动更新

https://blog.csdn.net/qq_33487630/article/details/148947616https://blog.csdn.net/qq_33487630/article/details/148947616

2025-11-16 16:24:21 212

原创 5G 、HSPA+、HSUPA 、LTE 、UMTS

从语音和基础上网的3G (UMTS) -> 到速度大幅提升的3G增强版 (HSUPA/HSPA+) -> 再到高速移动宽带的4G (LTE) -> 最终迈向万物互联的5G。如今,HSUPA和UMTS正在被逐步关闭,HSPA+作为后备网络,LTE是当前的主力覆盖网络,而5G则是正在快速部署的新一代技术。

2025-11-16 15:40:50 894

原创 如何设计深度学习实验?

s_r=0s_r=0。

2025-11-16 09:20:20 294

原创 在线学习、概念漂移、跨域学习、迁移学习之间的关系

我们可以把它们看作是解决模型“适应变化”这一核心问题的不同层面和手段。

2025-11-15 16:34:09 136

原创 bypy aria2

https://zhuanlan.zhihu.com/p/5553580233https://zhuanlan.zhihu.com/p/5553580233

2025-11-13 17:08:14 293

原创 如何删除word中的长横线(由三个减号---自动生成)

https://blog.csdn.net/inch2006/article/details/102931762https://blog.csdn.net/inch2006/article/details/102931762

2025-11-11 19:05:04 217

原创 arXiv、CoRR、SSRR

(89 封私信 / 80 条消息) 如果一个论文只在arXiv上挂着,没有在什么会和期刊发表过,却有几万的引用量,如何评价这类论文?(89 封私信 / 80 条消息) arxiv与ssrn哪个更好 - 知乎。arXiv和CoRR的区别与关系_corr是什么会议-CSDN博客。CoRR和arXiv到底是什么?_corr期刊-CSDN博客。

2025-11-11 07:43:20 235

原创 常见Web服务QoS数据集

大部分Web QoS数据集原始格式并非简单的.csv时间序列表格,但可以从其记录中构建出时间序列用于预测。而像QWS数据集,其单行多属性的格式则更接近传统的多变量数据表。

2025-11-08 15:33:01 367

原创 word里面哪个英文字体比较好看?

https://zhuanlan.zhihu.com/p/538321925https://zhuanlan.zhihu.com/p/538321925

2025-11-06 07:30:41 181

原创 人工智能:为什么很多机器学习和深度学习的论文复现不了?

https://blog.csdn.net/u013250861/article/details/121879086https://blog.csdn.net/u013250861/article/details/121879086

2025-11-01 10:10:34 179

原创 ChatGPT、DeepSeek、可灵、豆包、Claude、Gemini、Grok、Cursor | 2025年AI工具全景图,从入门到精通,这一篇就够了

https://zhuanlan.zhihu.com/p/27471083009https://zhuanlan.zhihu.com/p/27471083009

2025-10-25 16:56:05 316

原创 Xavier 初始化方法

特性Xavier / Glorot 初始化目标保持网络各层在前向传播和反向传播过程中信号的方差稳定,防止梯度消失/爆炸。核心思想根据当前层的扇入(ninn_{in}nin​和扇出(noutn_{out}nout​来决定初始权重的尺度。关键公式(均匀)W∼U−6ninnout6ninnoutW∼U−nin​nout​6​​nin​nout​6​​适用场景使用。

2025-10-23 14:36:35 1208

原创 两个重要的激活函数:GELU 和 Mish

GELU和Mish都是ReLU的优秀继任者,它们通过引入平滑性和非单调性,解决了ReLU可能导致神经元死亡、梯度不连续等问题。它们的核心区别在于设计哲学和数学实现:GELU源于概率视角,而Mish源于函数组合视角。在实际应用中,GELU主导了NLP领域,而Mish在CV领域展现了强大的潜力。

2025-10-21 13:52:26 767

原创 从WORD中取出图片(复制或者另存为)后变模糊了,变得不清楚

https://blog.csdn.net/zuliang001/article/details/111621282https://blog.csdn.net/zuliang001/article/details/111621282

2025-10-16 14:04:52 159

原创 归一化流、卡尔曼滤波、扩散模型

这是一个高级概念,指利用归一化流的表达能力来增强传统状态空间模型(如卡尔曼滤波),使其能够处理非线性和非高斯的后验分布。它通过用流来参数化后验或系统模型来实现。与扩散模型的对比根本区别在于概率密度是否归一化。归一化流提供精确密度,扩散模型不提供。操作方式上,流使用确定性的可逆映射,而扩散模型使用随机的扩散和去噪过程。应用代价上,流的采样极快但模型设计(要求可逆、易算雅可比)复杂;扩散模型采样慢但模型设计灵活,训练稳定,并且在图像生成等领域取得了顶尖效果。

2025-10-14 16:05:10 368

原创 归一化流和非归一化概率模型

非归一化模型(EBM)就像一个雕塑家。他心中有一个完美的雕塑(数据分布),他通过不断地凿去不符合想象的部分(高能量区域)来塑造它。但他不知道最终雕塑的确切重量(归一化常数),只能通过感觉(近似方法)来调整。归一化流就像一个魔术师。他手里有一团已知形状的橡皮泥(简单分布),通过一系列精心设计的、可逆的折叠和拉伸动作(可逆变换),把它变成了一个复杂的形状(目标分布)。因为他记录了每一个动作(雅可比行列式),所以他总能说出新形状上任何一点的“厚度”是多少(概率密度)。

2025-10-14 15:53:23 468

原创 波导效应,引导电磁波、声波或其他类型的波沿着特定路径传播

波导效应是一种通过结构设计(通常是高/低折射率介质或金属边界),利用全反射原理,将波的能量约束在特定路径上并引导其定向传播的物理现象。它不仅是理解现代光通信和微波技术的基础,其原理也渗透在从宏观的雷达天线到微观的集成芯片等众多高科技领域之中。

2025-10-10 08:29:08 1092

原创 Friedman检验 及其相关的排序(Ranking)

概念解释与计算Friedman检验一种基于排名的非参数检验,用于判断多个相关样本(如多个算法在多个数据集上的表现)是否存在显著差异。平均排名($R_j \)每个算法在所有数据集上排名的平均值。这是Friedman排名的直接依据,值越小表示综合性能越好。Nemenyi检验Friedman检验显著后使用的事后检验,用于两两比较。关键差异(CD)CDqαkk16NCDqα​6Nkk1​​。两个算法的平均排名之差必须大于CD值,其差异才被认为是统计显著的。CD图。

2025-10-07 17:53:24 828

原创 把显示器显示范围缩小

有人会说,为什么27英寸的屏幕我还要调小,他自己都觉得27英寸还不够大。呃呃呃,我也知道大屏幕看视频、玩游戏、剪辑啥的更方便,但是我个人可能就是对显示器的辐射比较敏感,屏幕超过一定尺寸,我看久了就会头晕,而小屏幕却不会出现这个问题。我只能说,我可能是没有用大屏幕的命吧。因此有了记录这篇blog的契机。请注意,这不是常规的调节分辨率的blog,而是让显示器居中显示的blog,也就是说,会存在大量黑边不显示任何内容。

2025-10-05 17:11:36 338

原创 Sublime Text 3 的标签栏和侧边栏更改字体和大小

Sublime Text 3的标签栏和侧边栏更改字体和大小 - 山炮不二。

2025-09-30 11:59:53 177

原创 精细修改设置中的缩放级别

怎样调整VSCode的界面缩放比例 自由放大缩小界面显示-VSCode-PHP中文网。

2025-09-26 09:31:01 197

原创 Word:论文排版专题——表格跨页续表

Word:论文排版专题——表格跨页续表_毕业论文表格跨页续表-CSDN博客。

2025-09-23 21:32:19 326

原创 OFDM(正交频分复用)

OFDM技术通过将宽带信道划分为多个正交的窄带子信道,有效解决了频率选择性衰落和码间干扰问题。其核心优势在于高频谱效率和抗多径能力,使其成为现代无线通信系统的关键技术。尽管存在PAPR高、同步要求严格等挑战,但通过各种优化技术,OFDM已在Wi-Fi、LTE、5G等标准中广泛应用。随着通信技术的发展,OFDM的变体如OFDMA(正交频分多址)在5G中继续发挥重要作用,为未来高速无线通信奠定基础。

2025-09-23 15:34:02 1189

原创 Linux screen 无法使用滚动条解决方案

https://blog.csdn.net/CalvinHXM/article/details/131823976https://blog.csdn.net/CalvinHXM/article/details/131823976

2025-09-22 23:01:54 197

原创 VMware16虚拟机:运行卡顿,响应缓慢

VMware16虚拟机:运行卡顿,响应缓慢_虚拟机很卡但主机不卡-CSDN博客。

2025-09-21 20:07:29 344

原创 上背部(特别是肩胛骨之间和周围的区域)紧张、僵硬、舒展不开

不良坐姿(最常见的原因):长时间保持静态:压力与情绪因素:核心肌群力量不足:重复性动作:优化学习环境( Ergonomics 人体工学):打破静态,定时活动:加强相关肌肉力量:管理压力:

2025-09-17 18:36:00 201

原创 vscode中sticky scroll中的outlinemodel、foldingProvidermodel、indentationModel

OutlineModel (专家):小组里的领域专家。他直接阅读报告,准确地指出章、节、小节的标题(# 第一章## 1.1 节### 1.1.1 小节这是最权威的信息源。FoldingProviderModel (编辑):小组里的编辑。他可能不像专家那么懂内容,但他知道出版社的排版规则,哪些部分可以被折叠起来。他会指出一些专家可能没提到的、但形式上可以折叠的部分(例如,一个附录或参考文献列表)。他补充专家的意见。IndentationModel (助理):小组里的助理。

2025-09-17 18:33:07 477

原创 vscode中sticky scroll中的outlinemodel、foldingProvidermodel、indentationModel

OutlineModel (专家):小组里的领域专家。他直接阅读报告,准确地指出章、节、小节的标题(# 第一章## 1.1 节### 1.1.1 小节这是最权威的信息源。FoldingProviderModel (编辑):小组里的编辑。他可能不像专家那么懂内容,但他知道出版社的排版规则,哪些部分可以被折叠起来。他会指出一些专家可能没提到的、但形式上可以折叠的部分(例如,一个附录或参考文献列表)。他补充专家的意见。IndentationModel (助理):小组里的助理。

2025-09-17 18:32:32 610

原创 vscode中sticky scroll中的outlinemodel、foldingProvidermodel、indentationModel

OutlineModel (专家):小组里的领域专家。他直接阅读报告,准确地指出章、节、小节的标题(# 第一章## 1.1 节### 1.1.1 小节这是最权威的信息源。FoldingProviderModel (编辑):小组里的编辑。他可能不像专家那么懂内容,但他知道出版社的排版规则,哪些部分可以被折叠起来。他会指出一些专家可能没提到的、但形式上可以折叠的部分(例如,一个附录或参考文献列表)。他补充专家的意见。IndentationModel (助理):小组里的助理。

2025-09-16 10:00:12 278

原创 VSCode 开启代码提示 包括变量名称,函数参数等;代码函数名称浏览时固定sticky scroll

https://blog.csdn.net/Flouxetine1/article/details/136326189https://blog.csdn.net/Flouxetine1/article/details/136326189https://juejin.cn/post/7291125585668145152https://juejin.cn/post/7291125585668145152https://dev59.com/clcP5IYBdhLWcg3weJ1Rhttps://dev59.co

2025-09-16 09:52:59 450

原创 时间序列预测经典数据集

这些数据集大多以CSV格式存储,每一行代表一个时间戳,每一列代表一个变量(特征)。核心任务通常是多变量时间序列预测,即利用过去多个变量(如温度、湿度、压力)的历史数据,来预测未来一个或多个目标变量(如油温、电力负荷)的值。数据集主要变量时间粒度核心特点典型任务ETT油温(OT), 6种负载15min / 1h多变量强相关,工业数据,周期性油温预测8国汇率1天非平稳,受外部事件驱动,经济数据多变量汇率预测PEMS交通流量/速度/占用率5min时空图数据,强时空依赖性时空图预测。

2025-09-16 09:46:52 2049

原创 mamba-ssm安装卡着不动

https://blog.csdn.net/qq_43767886/article/details/138681486https://blog.csdn.net/qq_43767886/article/details/138681486https://zhuanlan.zhihu.com/p/686355774https://zhuanlan.zhihu.com/p/686355774

2025-09-15 15:08:03 373

原创 Mamba 环境安装:causal-conv1d和mamba-ssm报错解决办法

https://developer.aliyun.com/article/1462241https://developer.aliyun.com/article/1462241

2025-09-15 13:36:16 289

原创 torch.chunk

input(Tensor): 要分割的输入张量chunks(int): 要分割的块数dim(int, optional): 沿着哪个维度进行分割,默认为0(第一维)返回一个包含分割后所有块的元组(Tuple[Tensor, …])

2025-09-11 11:32:02 505

原创 跳跃连接(Skip Connections)

跳跃连接从一个简单的、用于解决梯度消失和网络退化问题的技巧,已经演变为现代深度学习架构设计的核心指导思想之一。它的含义远不止于“连接两层网络”,它代表了一种构建可持续梯度流促进特征复用实现高效跨模块信息集成的哲学。应用领域具体形式主要作用扩散模型U-Net中的编码器-解码器跳跃连接保持图像细节,稳定大规模生成模型训练(曼哈顿)注意力Transformer子层周围的残差连接确保极深Transformer网络的稳定性和可训练性多模态模型跨模态跳跃连接实现细粒度的模态对齐与特征融合,提升联合表征能力。

2025-09-10 20:50:06 852

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除