原码的加减法计算规则

原码的加减法计算规则
计算机中原码的加减法计算规则为:
符号位不参与计算,数值位进行加减。

① 在加法中分两种情况:

  1. 第二操作数为正号,此时对第一操作数和第二操作数的数值位做加法。
  2. 第二操作数为负号,此时对第一操作数和第二操作数的数值位做减法。

② 在减法中分两种情况:

  1. 第二操作数为正号,对第一操作数和第二操作数的数值位做减法。
  2. 第二操作数为负号,对第一操作数和第二操作数的数值位做加法。

在对数值位做加减法规则如下:

做加法时,符号位不参与计算,数值位相加。如果最高数值位产生了进位,则结果溢出。如果最高数值位没有产生
进位,则结果正确,计算结果的符号位取第一操作数的符号。

做减法时,符号位也不参与计算,第二操作数取补码,与第一操作数相加。此时又分两种情况,相加时如果最高
数值位产生了进位,说明数值位计算结果正确,符号位取第一操作数的符号;如果相加时最高数值位没有产生进位,则
需要对计算结果取绝对值,即对所得到的数值位求补(所有数值位求反后+1)作为计算结果,符号位取第一操作数的
符号的反。

例:[x]原=+1101,[y]原=-1010, [x]原+[y]原=
数值位做减法运算,[y]数值位求补,得0110,与1101做加法。 0110+1101=1,0011,最高数值位产生了进位,因此结果正确,符号位取[x]原的符号,得+0011。

### 真值、原码、反码、补码的概念 在计算机科学中,为了表示带符号的二进制数并简化硬件设计中的加法器电路结构,引入了不同的编码方式来处理正负数。这些编码方法包括真值、原码、反码和补码。 #### 1. 真值 真值是指实际存在的数值,在十进制下可以直接理解为人们日常使用的整数形式。当涉及到二进制表达时,则需要通过特定的方式将其转换成机器能够识别的形式[^1]。 #### 2. 原码 对于任意给定的一个有符号定点小数或整数X(假设字长n),如果它是非负数,则其最高位设为0;如果是负数,则最高位置1,并且剩下的部分按照绝对值得到相应的二进制序列作为该数的原码表示[^4]。 #### 3. 反码 - 对于正值而言,它的反码与其原码完全一致; - 而对于负值来说,除了保持原有的符号位外,其他各位均需按位求反得到最终结果[^2]。 #### 4. 补码 这是最常用的一种编码方案,它不仅解决了减法操作复杂度高的问题,还使得两个同号数相加不会溢出造成错误。具体定义如下: - 正数的补码等于自身的原码; - 负数的补码则是先计算出对应的反码再对其最低有效位加上1所获得的新串列。 ### 加减法规则 由于采用补码可以统一加法与减法的操作过程——即无论是做加还是做减都可以转化为简单的模意义下的加法运算,因此现代计算机内部几乎都使用补码来进行四则运算: ```python def add(a, b): # a 和 b 是两个 n 位二进制字符串代表的补码 result = bin(int('0b' + str(a), base=2) + int('0b' + str(b), base=2))[2:] while len(result)<len(a): result='0'+result return result[-len(a):] def subtract(a, b): # 实现a-b的效果 neg_b = ''.join(['1' if c=='0' else '0' for c in b]) # 得到b的反码 temp_result = add(neg_b,'1') # 将上述所得转为补码 final_result=add(a,temp_result) return final_result ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CIGIT-YuxingCai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值