python画图局部放大图代码

模型评估:ROC曲线与残差图分析
本文展示了不同机器学习模型(如逻辑回归、SVM、神经网络等)的ROC曲线,用于评估其分类性能。同时,通过残差图检查了时间序列数据中的自相关性,用以检测异常值并进行局部放大分析,强调了模型验证和诊断的重要性。
# 不同模型的ROC曲线
lable_names = ["逻辑回归","SVM","神经网络","随机森林","决策树"] # 模型名称
colors = ["r","b","g","m","k",] # 不同曲线颜色
linestyles =["-", "--", "-.", ":", "-"] #不同曲线

fig  = plt.figure(figsize=(8,7),dpi=150)
for n in range(5):
    ## 计算绘制ROC曲线的取值
        plt.plot(fpr[n], tpr[n],color=colors[n],linewidth = 2,
                 linestyle = linestyles[n],
                 label = f'AUC={auc[n]} '+lable_names[n])
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel("假正率"); plt.ylabel("真正率")
plt.xlim(0, 1); plt.ylim(0, 1)
plt.grid()
plt.legend()
plt.title("不同模型的ROC曲线")
## 放大的图片
inset_ax = fig.add_axes([0.3, 0.45, 0.4, 0.4],
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值