# 不同模型的ROC曲线
lable_names = ["逻辑回归","SVM","神经网络","随机森林","决策树"] # 模型名称
colors = ["r","b","g","m","k",] # 不同曲线颜色
linestyles =["-", "--", "-.", ":", "-"] #不同曲线
fig = plt.figure(figsize=(8,7),dpi=150)
for n in range(5):
## 计算绘制ROC曲线的取值
plt.plot(fpr[n], tpr[n],color=colors[n],linewidth = 2,
linestyle = linestyles[n],
label = f'AUC={auc[n]} '+lable_names[n])
plt.plot([0, 1], [0, 1], 'k--')
plt.xlabel("假正率"); plt.ylabel("真正率")
plt.xlim(0, 1); plt.ylim(0, 1)
plt.grid()
plt.legend()
plt.title("不同模型的ROC曲线")
## 放大的图片
inset_ax = fig.add_axes([0.3, 0.45, 0.4, 0.4],
python画图局部放大图代码
模型评估:ROC曲线与残差图分析
最新推荐文章于 2024-10-25 09:37:11 发布
本文展示了不同机器学习模型(如逻辑回归、SVM、神经网络等)的ROC曲线,用于评估其分类性能。同时,通过残差图检查了时间序列数据中的自相关性,用以检测异常值并进行局部放大分析,强调了模型验证和诊断的重要性。

最低0.47元/天 解锁文章
3302

被折叠的 条评论
为什么被折叠?



