需求1 更改时间格式/间隔
方法1 将转为str,再截取
a = df.resample(on='create_time', rule='1m').content_id.count()
a.plot.bar(figsize=(15,5))
# resample by month
fig1 = plt.figure()
ax = fig1.add_subplot(1,1,1)
a = df.resample(on='create_time', rule='1m').content_id.count()
a.index = a.index.astype(str).str[:7]
a.plot.bar(ax=ax, figsize=(15,5))
from matplotlib.pyplot import MultipleLocator
x_major_locator=MultipleLocator(2) # 把x轴的刻度间隔设置为原来的2倍
ax.xaxis.set_major_locator(x_major_locator) # 把x轴的主刻度设置为1的倍数
方法2 控制ax.xaxis对象
- 想把x轴的坐标间隔变小
- 想把x轴坐标显示为 时:分 如:
20:00
原来的图:
import matplotlib.dates as mdate
fig1 = plt.figure(figsize=(15,5))
ax = fig1.add_subplot(1,1,1)
ax.xaxis.set_major_formatter(mdate.DateFormatter('%H:%M'))#设置时间标签显示格式
a = dmS.resample(on='sendTime', rule='T').sendTime.count()
plt.plot(a.rolling(10).mean()) # 移动平均折线图,请忽略新增的移动平均
plt.xticks(rotation=30)
ax=plt.gca()
# 减小x轴刻度的间隔
from matplotlib.pyplot import MultipleLocator
x_major_locator=MultipleLocator(0.005) # 把x轴的刻度间隔设置为1,并存在变量里
ax.xaxis.set_major_locator(x_major_locator) # 把x轴的主刻度设置为1的倍数
减小间隔
# 减小x轴刻度的间隔
from matplotlib.pyplot import MultipleLocator
x_major_locator=MultipleLocator(0.005) # 把x轴的刻度间隔设置为0.005,并存在变量里
ax.xaxis.set_major_locator(x_major_locator) # 把x轴的主刻度设置为1的倍数
改变时间刻度的格式
import matplotlib.dates as mdate
fig1 = plt.figure(figsize=(15,5))
ax = fig1.add_subplot(1,1,1)
ax.xaxis.set_major_formatter(mdate.DateFormatter('%H:%M'))#设置时间标签显示格式
显示每个月的第n天
通过更改mdate.DayLocator参数
from matplotlib.pyplot import MultipleLocator
import matplotlib.dates as mdate
x_major_locator=mdate.DayLocator(bymonthday=15) # 把x轴的刻度间隔设置为0.005,并存在变量里
ax.xaxis.set_major_locator(x_major_locator) # 把x轴的主刻度设置为1的倍数
方法三
本来是这样:
加了一行:
plt.xticks(range(标签长度), 标签)
需求3:设置坐标轴格式(百分比)
import matplotlib.ticker as mtick
fmt='%.2f%%'
yticks = mtick.FormatStrFormatter(fmt)
ax.yaxis.set_major_formatter(yticks)