阅读笔记,仅作为学习记录,学校神经信号与人机智能课程的助教推荐了这本书
此书配套代码:mikexcohen/AnalyzingNeuralTimeSeries: Code for ANTS book (Cohen, 2012, MIT Press) (github.com)
Chapter3 Interpreting and Asking Questions about Time-Frequency Results
3.1 EEG Time-Frequency: The Basics
EEG数据的节律性活动反应神经振荡(neural oscillations),实质上是神经元群(对EEG来说是 cortical pyramidal cells)树突电活动的搏动。
这里的神经元群点活动是非常多神经元的同步活动,使电场足够大能通过脑组织、脑脊液、颅骨和皮肤到达靠近头皮电极放置位置:
(Espen Hagen, 2018)
-
单个神经元膜电位变化:70mV~100mV
-
EEG信号:0.5~100uV ; 0.5~100Hz
较长时间振荡可持续数秒到数十分钟;
较短振荡持续几十到几百毫秒。
Oscillation描述三维度: frequency(Hz), power, and phase(radians/degrees)
-
Power:一个频带内的能量;振荡振幅的平方
-
Phase: 任何给定时间点沿正弦波的位置;
-
Power和Phase相互独立。
大脑节律频段:
-
subdelta
-
delta (1 – 3 Hz):level 3 and 4 sleep i.e. deep dreamless sleep
-
theta (4 – 8 Hz): meditation and level 1 and 2 sleep
-
alpha (8 – 12 Hz):relaxed calm, the brain wave pattern of insights nad Eureka moment
-
beta (15 – 30 Hz)
-
lower gamma (30 – 80 Hz)
-
upper gamma (80 – 150 Hz)
-
omega(up to 600Hz)
与认知过程最相关的频带:(2-150Hz)
峰值频率存在个体差异,与包括大脑结构、年龄、工作记忆能力和大脑化学等个体特征有关。
很难在频率和时间上精确地定位振荡活动。通常,分析参数允许您在一个域(时间或频率)中选择更好的精度。
-
phase-locked activity:每次试验的阶段相同或非常相似
-
non-phase-locked activity:每次试验的阶段不同
Figure2.2显示了一个非锁相活动的示例,并且所有的ERPs都是锁相活动的示例。
节律活动的变化有与任务需求有关的,包括知觉、认知、运动、语言、社会、情感、记忆和其他功能过程。
也有任务无关的,这部分背景信号通常被基线标准化去除,但是现在也有研究其可能以更复杂的方式支持神经计算的研究。
空间自相关:相邻电极的活动是强相关的,相关强度随距离而降低
这限制了空间精度,并可能导致某些连通性分析的虚假或夸大的结果。有几种类型的空间滤波器可以减弱空间自相关,从而改善地形或大脑定位。这些空间过滤器也使数据更适合用于连通性分析。
3.2 Ways to View Time-Frequency Results
A:Frequency slice:时间丢失,适合频率特征几乎没有时变变化,比如静息状态或睡眠阶段
B:Time slice:选择一个特定频带,适用比较多个条件或电极下的活动以及当有先验理由关注特定频带。
C: Space slice:数据显示一个地形图中的电极上的一个时频点,或多个相邻时频点的平均值,有助于可视化效果的地形分布,并促进地形定位。
D: Time-frequency slice: 图的颜色(也称为z轴或深度)反映了时频数据的一些特征,如功率(最常见)、相位聚类、连通性或相关系数。
3.4 How to View and Interpret Time-Frequency Results
1:关注横纵坐标,时频图颜色含义和范围
2:检查结果:
是否在多个频率和时间窗上有活动,或者所有的活动都集中在一个时频“blob”中?
活动持续时间是短还是长,它是受频带限制的还是它跨越多个频带?
刺激前时期是否有活动(该时期通常用于基线标准化)?
如果结果从几个电极或在地形图上显示,是否存在地形特异性;也就是说,影响是否有选择性地出现在头皮的某些部位?
如果没有空间信息显示,从哪个电极(s)的结果显示,为什么?
3:将结果联系到实验(或患者群体、基因或药物治疗,或其他自变量):
time=0指的是什么?
实验中是否存在多个事件(例如,第一刺激、第二刺激、反应),这些不同的事件在时频结果中是如何表现出来的?
考虑到实验设计,这些结果是否有意义?
它们是否与之前使用类似设计的研究结果一致?
是否有作者/演讲者没有提到的结果的突出特征(这可能是由于关于特定时频窗口的先验假设)?
研究结果对所研究的认知过程及其潜在的神经实施意味着什么?
最后,这些结果是否提供了任何关于大脑功能的新信息,或者是否可以简单地用反应时间等参数来代替所显示的结果,并得出相同的结论?
4:理解用于支持这些解释的统计程序:
是否使用了任何统计阈值?
-如果没有,结果应该定性地而不是定量地解释。
分析是由假设驱动的,还是由探索性的和数据驱动的?
-这影响了对结果的解释以及适当的统计方法:
探索性数据驱动的方法,通常需要保守的统计阈值和对时间、频率和电极进行多次比较(或体素,如果数据是在大脑空间而不是电极空间进行分析)进行校正。
假设驱动的分析,增加了敏感性和理论相关性,而不那么严格的阈值,如p < 0.05可能是可以接受的。
探索性分析可能缺乏检测结果的微妙特征的敏感性,而假设驱动的分析可能会遗漏该理论没有预测到的结果的重要特征。
如果这些分析是由假设驱动的,那么如何选择时频空间窗口来进行统计分析呢?
-一些关于分析选择和参数设置的详细问题,这些问题可能会影响结果或可能突出显示数据的具体特性
3.5 Things to Be Suspicious of When Viewing Time-Frequency Results
时频结果的一些特征应该会引起怀疑,尽管它们不一定是伪影。在面板B和面板C中,有问题的单次试验(在99个其他数据良好的试验中)被叠加在时频图上(脑电图轨迹振幅是任意缩放的)。面板E中的地形图是通过随机交换电极标签-位置映射而产生的。
A:时频图中的水平或垂直条纹:可能反映了由于滤波器结构不良而产生的纹波伪影。如果滤波器宽度太窄,或者滤波器应用的数据太少,从而导致边缘伪影。
B:高频下的短暂和大功率效应:可能是由脑电图伪影驱动,如放大器饱和度或来自不良电极的噪声峰值。即使在100次试验中就有一个非常大的伪影。
C:跨越多个 “ classical ”频率带的broadband effects,可能是由于机械噪音或来自颌或颈部的过度肌肉活动。
D:颜色随着时间或频率的快速变化,可能是分析中的一个错误(在这种情况下,分析信号的实部被绘制,而不是功率)。低频率的快速变化比高频率的快速变化更可疑,因为在低频率上增加了时间平滑。在图3.4D所示的情况下,没有伪影,但信号实部的时频图信息较少,因此通常不显示。
E:包含许多峰值的奇怪的地形分布。可能是由于噪声或不良的电极,或由于电极标签和物理位置之间的不正确映射(这是图3.4E的情况)。请注意,高通空间滤波器,如表面拉普拉斯算子将增加地形定位和突出局部空间特征。