Analyzing Neural Time Series Data Chapter3

阅读笔记,仅作为学习记录,学校神经信号与人机智能课程的助教推荐了这本书

此书配套代码:mikexcohen/AnalyzingNeuralTimeSeries: Code for ANTS book (Cohen, 2012, MIT Press) (github.com)

Chapter3 Interpreting and Asking Questions about Time-Frequency Results

3.1 EEG Time-Frequency: The Basics

EEG数据的节律性活动反应神经振荡(neural oscillations),实质上是神经元群(对EEG来说是 cortical pyramidal cells)树突电活动的搏动。

这里的神经元群点活动是非常多神经元的同步活动,使电场足够大能通过脑组织、脑脊液、颅骨和皮肤到达靠近头皮电极放置位置:

(Espen Hagen, 2018)

  • 单个神经元膜电位变化:70mV~100mV

  • EEG信号:0.5~100uV ; 0.5~100Hz

较长时间振荡可持续数秒到数十分钟;

较短振荡持续几十到几百毫秒。

Oscillation描述三维度: frequency(Hz), power, and phase(radians/degrees)

 

  • Power:一个频带内的能量;振荡振幅的平方

  • Phase:   任何给定时间点沿正弦波的位置;

  • Power和Phase相互独立。

大脑节律频段:

  • subdelta

  • delta (1 – 3 Hz):level 3 and 4 sleep i.e. deep dreamless sleep

  • theta (4 – 8 Hz): meditation and level 1 and 2 sleep

  • alpha (8 – 12 Hz):relaxed calm, the brain wave pattern of insights nad Eureka moment

  • beta (15 – 30 Hz)

  • lower gamma (30 – 80 Hz)

  • upper gamma  (80 – 150 Hz)

  • omega(up to 600Hz)

与认知过程最相关的频带:(2-150Hz)

峰值频率存在个体差异,与包括大脑结构、年龄、工作记忆能力和大脑化学等个体特征有关。

很难在频率和时间上精确地定位振荡活动。通常,分析参数允许您在一个域(时间或频率)中选择更好的精度。

  • phase-locked activity:每次试验的阶段相同或非常相似

  • non-phase-locked activity:每次试验的阶段不同

 

Figure2.2显示了一个非锁相活动的示例,并且所有的ERPs都是锁相活动的示例。

节律活动的变化有与任务需求有关的,包括知觉、认知、运动、语言、社会、情感、记忆和其他功能过程。

也有任务无关的,这部分背景信号通常被基线标准化去除,但是现在也有研究其可能以更复杂的方式支持神经计算的研究。

空间自相关:相邻电极的活动是强相关的,相关强度随距离而降低

这限制了空间精度,并可能导致某些连通性分析的虚假或夸大的结果。有几种类型的空间滤波器可以减弱空间自相关,从而改善地形或大脑定位。这些空间过滤器也使数据更适合用于连通性分析。

3.2 Ways to View Time-Frequency Results

 

A:Frequency slice:时间丢失,适合频率特征几乎没有时变变化,比如静息状态或睡眠阶段

B:Time slice:选择一个特定频带,适用比较多个条件或电极下的活动以及当有先验理由关注特定频带。

C:  Space slice:数据显示一个地形图中的电极上的一个时频点,或多个相邻时频点的平均值,有助于可视化效果的地形分布,并促进地形定位。

D:  Time-frequency slice: 图的颜色(也称为z轴或深度)反映了时频数据的一些特征,如功率(最常见)、相位聚类、连通性或相关系数。

3.4 How to View and Interpret Time-Frequency Results

1:关注横纵坐标,时频图颜色含义和范围

2:检查结果:

是否在多个频率和时间窗上有活动,或者所有的活动都集中在一个时频“blob”中?

活动持续时间是短还是长,它是受频带限制的还是它跨越多个频带?

刺激前时期是否有活动(该时期通常用于基线标准化)?

如果结果从几个电极或在地形图上显示,是否存在地形特异性;也就是说,影响是否有选择性地出现在头皮的某些部位?

如果没有空间信息显示,从哪个电极(s)的结果显示,为什么?

3:将结果联系到实验(或患者群体、基因或药物治疗,或其他自变量):

time=0指的是什么?

实验中是否存在多个事件(例如,第一刺激、第二刺激、反应),这些不同的事件在时频结果中是如何表现出来的?

考虑到实验设计,这些结果是否有意义?

它们是否与之前使用类似设计的研究结果一致?

是否有作者/演讲者没有提到的结果的突出特征(这可能是由于关于特定时频窗口的先验假设)?

研究结果对所研究的认知过程及其潜在的神经实施意味着什么?

最后,这些结果是否提供了任何关于大脑功能的新信息,或者是否可以简单地用反应时间等参数来代替所显示的结果,并得出相同的结论?

4:理解用于支持这些解释的统计程序:

是否使用了任何统计阈值?

-如果没有,结果应该定性地而不是定量地解释。

分析是由假设驱动的,还是由探索性的和数据驱动的?

-这影响了对结果的解释以及适当的统计方法:

探索性数据驱动的方法,通常需要保守的统计阈值和对时间、频率和电极进行多次比较(或体素,如果数据是在大脑空间而不是电极空间进行分析)进行校正。

假设驱动的分析,增加了敏感性和理论相关性,而不那么严格的阈值,如p < 0.05可能是可以接受的。

探索性分析可能缺乏检测结果的微妙特征的敏感性,而假设驱动的分析可能会遗漏该理论没有预测到的结果的重要特征。

如果这些分析是由假设驱动的,那么如何选择时频空间窗口来进行统计分析呢?

-一些关于分析选择和参数设置的详细问题,这些问题可能会影响结果或可能突出显示数据的具体特性

3.5 Things to Be Suspicious of When Viewing Time-Frequency Results  

时频结果的一些特征应该会引起怀疑,尽管它们不一定是伪影。在面板B和面板C中,有问题的单次试验(在99个其他数据良好的试验中)被叠加在时频图上(脑电图轨迹振幅是任意缩放的)。面板E中的地形图是通过随机交换电极标签-位置映射而产生的。

A:时频图中的水平或垂直条纹:可能反映了由于滤波器结构不良而产生的纹波伪影。如果滤波器宽度太窄,或者滤波器应用的数据太少,从而导致边缘伪影。

B:高频下的短暂和大功率效应:可能是由脑电图伪影驱动,如放大器饱和度或来自不良电极的噪声峰值。即使在100次试验中就有一个非常大的伪影。

C:跨越多个 “ classical ”频率带的broadband effects,可能是由于机械噪音或来自颌或颈部的过度肌肉活动。

D:颜色随着时间或频率的快速变化,可能是分析中的一个错误(在这种情况下,分析信号的实部被绘制,而不是功率)。低频率的快速变化比高频率的快速变化更可疑,因为在低频率上增加了时间平滑。在图3.4D所示的情况下,没有伪影,但信号实部的时频图信息较少,因此通常不显示。

E:包含许多峰值的奇怪的地形分布。可能是由于噪声或不良的电极,或由于电极标签和物理位置之间的不正确映射(这是图3.4E的情况)。请注意,高通空间滤波器,如表面拉普拉斯算子将增加地形定位和突出局部空间特征。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值