写给学生看的系统分析与验证笔记(十七)—LTL VS CTL


虽然LTL和CTL的不同之处在之前都总结过了,不过这边再来单独对比一下,算是对之前知识的一个梳理。

LTL和CTL的等价

由之前的一张图我们看到,CTL和LTL有部分的表达是有交集的,这部分既可以用LTL表达,又可以用CTL表达,那么如何形式化地定义等价这个概念呢?
在这里插入图片描述
如果一个LTL公式 φ φ φ和一个CTL公式 Φ \Phi Φ是等价的(记为 φ ≡ Φ φ\equiv\Phi φΦ),那么当且仅当,对于AP上的TS来说
T S ⊨ φ ⇔ T S ⊨ Φ TS\vDash φ\Leftrightarrow TS\vDash\Phi TSφTSΦ

例如有这些个公式是等价的

CTL公式 Φ \Phi ΦLTL公式 φ φ φ
aa
∀ ◯ a \forall\bigcirc a a ◯ a \bigcirc a a
∀ ( a U b ) \forall(aUb) (aUb) a U b aUb aUb
∀ □ a \forall\Box a a □ a \Box a a
∀ ◊ a \forall\Diamond a a ◊ a \Diamond a a
∀ ( a W b ) \forall(aWb) (aWb) a W b aWb aWb
∀ □ ∀ ◊ a \forall\Box\forall\Diamond a a □ ◊ a \Box\Diamond a a

LTL和CTL各自能表达的部分

由上面的文氏图我们知道,LTL和CTL的表达能力并不完全等价,因为存在着只要有各自能够表达的部分

某些LTL公式不能表示成CTL公式,例如

  • ◊ □ a \Diamond\Box a a
  • ◊ ( a ∧ ◯ a ) \Diamond(a\wedge\bigcirc a) (aa)

某些CTL公式不能表示成LTL公式,例如

  • ∀ ◊ ∀ □ a \forall\Diamond\forall\Box a a
  • ∀ ◊ ( a ∧ ∀ ◯ a ) \forall\Diamond(a\wedge\forall\bigcirc a) (aa)
  • ∀ □ ∃ ◊ a \forall\Box\exist\Diamond a a

不等价案例

◊ ( a ∧ ◯ a ) \Diamond(a\wedge\bigcirc a) (aa) ∀ ◊ ( a ∧ ∀ ◯ a ) \forall\Diamond(a\wedge\forall\bigcirc a) (aa)不等价

例如下面这张图:
在这里插入图片描述
我们可以看到它能表示LTL公式 ◊ ( a ∧ ◯ a ) \Diamond(a\wedge\bigcirc a) (aa),但是不能表示CTL公式 ∀ ◊ ( a ∧ ∀ ◯ a ) \forall\Diamond(a\wedge\forall\bigcirc a) (aa),因为看到 S 0 , S 3 S_{0},S_{3} S0,S3这条路径,对于用CTL表示的 ∀ ◊ ( a ∧ ∀ ◯ a ) \forall\Diamond(a\wedge\forall\bigcirc a) (aa)来说,从 S 0 S_{0} S0的角度看,它不满足所有的下一个状态a成立。

再看另一个例子, ◊ □ a \Diamond\Box a a ∀ ◊ ∀ □ a \forall\Diamond\forall\Box a a不等价

就如下图所示
在这里插入图片描述
它能够表示LTL公式 ◊ □ a \Diamond\Box a a,但是不能表示CTL公式 ∀ ◊ ∀ □ a \forall\Diamond\forall\Box a a,我们把它的计算树画出来

在这里插入图片描述

我们看到最左边的那条路径,也就是说如果走的路径为 S 0 S 0 S 0 S 0 S 0 S 0 . . . . S_{0}S_{0}S_{0}S_{0}S_{0}S_{0}.... S0S0S0S0S0S0....那么就会有一条路径不满足 ∀ ◊ ∀ □ a \forall\Diamond\forall\Box a a

模型检测的复杂度

LTL模型检测的时间复杂度为
O ( ∣ T S ∣ ⋅ 2 ∣ ϕ ∣ ) O(|TS|·2^{|\phi|}) O(TS2ϕ)

CTL模型检测的时间复杂度为
O ( ∣ T S ∣ ⋅ ∣ ϕ ∣ ) O(|TS|·|\phi|) O(TSϕ)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值