算法通关村第19关【白银】| 动态规划高频问题

文章探讨了动态规划在多个编程问题中的应用,包括硬币兑换、最长递增序列、完全平方数、跳跃游戏、解码方法、不同路径和滚动数组优化,展示了如何通过递推公式、初始化和遍历顺序来求解这些问题。
摘要由CSDN通过智能技术生成

1.零钱兑换

思路:

确定dp:这里是最少硬币的个数,不是种类

确定递推公式:dp[j] = Math.min(dp[j],dp[j-coins[i]]+1),不要当前硬币dp[j]还是保持以前的组合方法,要当前硬币dp[j-coins[i]]+1

确定初始化:dp[0]=0,其他的都得初始化最大值

确定遍历顺序:组合排列都无所谓,保证完全背包从前往后即可

class Solution {
    public int coinChange(int[] coins, int amount) {
        int max = amount + 1;
        int[] dp = new int[amount+1];
        Arrays.fill(dp,max);
        dp[0] = 0;
        for(int i = 1;i<amount+1;i++){
            for(int j = 0;j<coins.length;j++){
                if(coins[j]<=i)
                    dp[i] = Math.min(dp[i],dp[i-coins[j]]+1);
            }
        }
        return dp[amount] >= max?-1:dp[amount];
    }
}

 2.最长连续递增序列

思路:

dp:当前最长的递增子序列长度

递增的时候:dp[i] = dp[i-1]+1

class Solution {
    public int findLengthOfLCIS(int[] nums) {
        int[] dp = new int[nums.length];
        int res = 1;
        for(int i = 0;i<nums.length;i++){
            dp[i] = 1;
        }
        for(int i = 1;i<nums.length;i++){
            if(nums[i]>nums[i-1]){
                dp[i] = dp[i-1] + 1;
            }
            res = res > dp[i] ? res : dp[i];
        }
        return res;
    }
}

3.最长递增子序列

思路:

确定dp:包含当前数字的最长递增子序列长度

确定递推公式:dp[i] = Math.max(dp[i],dp[j]+1),

确定初始化:dp[i]=1,只包含当前元素长度为1

确定遍历顺序:后面的dp依赖前面的得出从前往后

class Solution {
    public int lengthOfLIS(int[] nums) {
        int[] dp =new int[nums.length];
        Arrays.fill(dp,1);
        int res = 0;
        for(int i = 0;i<nums.length;i++){
            for(int j = 0;j<i;j++){
                if(nums[i]>nums[j]){
                    dp[i] = Math.max(dp[i],dp[j]+1);
                }          
            }
            res = Math.max(res,dp[i]);
        }
        return res;
    }
}

4.完全平方数

思路:

确定dp:当前数字最少组成数量

确定递推公式:dp[i] = Math.min(dp[i],dp[i-j*j]+1);当前和取j*j之中的最小

确定初始化:dp[0]=0,dp为max

确定遍历顺序:后面的dp依赖前面的得出从前往后

class Solution {
    public int numSquares(int n) {
        int[] dp = new int[n+1];
        Arrays.fill(dp,Integer.MAX_VALUE);
        dp[0] = 0;
        for(int i = 1;i<=n;i++){
            for(int j = 1;j*j<=i;j++){
                dp[i] = Math.min(dp[i],dp[i-j*j]+1);
            }
        }
        return dp[n];
    }
}

5.跳跃游戏

思路:

确定dp:当前能跳的最远距离

确定递推公式:dp[i] = Math.max(dp[j],j+nums[j]);

确定初始化:dp[0]=nums[0],dp为0

确定遍历顺序:后面的dp依赖前面的得出从前往后

class Solution {
    public boolean canJump(int[] nums) {
        int len = nums.length;
        if(len == 1){
            return true;
        }
        int[] dp = new int[len];
        Arrays.fill(dp,0);
        dp[0] = nums[0];
        for(int i = 0;i<len;i++){
            for(int j = 0;j<=i;j++){
                dp[i] = Math.max(dp[j],j + nums[j]);
            }
            if(i<len-1&&dp[i]<=i)
                return false;   
        }
        return true;
    }
}

6.解码方法

思路:

确定dp:当前的解码方案数

确定递推公式:dp[i] = dp[i-1]+dp[i-2]

  •         当 i-1 和 i 为0 或者 i 为0且 i-1 和 i 大于26:不符合条件,返回0
  •         当i为0,则dp[i] = dp[i-2]
  •         当i-1为0或者i-1不为0且i-1 和 i 大于26,则dp[i] = dp[i-1]
  •         其他情况,dp[i] = dp[i-1] + dp[i-2]

确定初始化:dp[0]=0

确定遍历顺序:后面的dp依赖前面的得出从前往后

class Solution {
    public int numDecodings(String s) {
        int len = s.length();
        if(s.charAt(0) == '0'){
            return 0;
        }
        if(len == 1){
            return 1;
        }
        int[] dp = new int[len];
        char[] c = s.toCharArray();
        dp[0] = 1;
        if(isAble(c[0],c[1])&&c[1]!='0'){
            dp[1] = 2;
        }else{
            dp[1] = 1;
        }
        if(c[1] == '0'&&!isAble(c[0],c[1])){
            return 0;
        }
        for(int i = 2;i<len;i++){
            if(c[i] == '0' && c[i-1] == '0'|| (c[i] == '0'&&!isAble(c[i-1],c[i]))){
                return 0;
            }
            if(c[i]=='0'){
                dp[i] = dp[i-2];
            }else if(c[i-1] == '0'){
                dp[i] = dp[i-1];
            }else if(isAble(c[i-1],c[i])){
                dp[i] = dp[i-1] + dp[i-2];
            }else{
                dp[i] = dp[i-1];
            }
        }
        return dp[len-1];
    }

    public boolean isAble(char c1,char c2){
        int num1 = c1 - '0';
        if(num1 == 0) return false;
        int num2 = c2 - '0';
        int num = num1*10 + num2;
        return num <=26 ? true : false;
    }
}

 也可以判断不符合的条件,更加简洁

class Solution {
    public int numDecodings(String s) {
        int n = s.length();
        int[] f = new int[n + 1];
        f[0] = 1;
        for (int i = 1; i <= n; ++i) {
            if (s.charAt(i - 1) != '0') {
                f[i] += f[i - 1];
            }
            if (i > 1 && s.charAt(i - 2) != '0' && ((s.charAt(i - 2) - '0') * 10 + (s.charAt(i - 1) - '0') <= 26)) {
                f[i] += f[i - 2];
            }
        }
        return f[n];
    }
}

7.不同路径II

思路:

确定dp:能到达当前位置的路径数

确定递推公式: dp[i][j] = dp[i-1][j] + dp[i][j-1];

确定初始化:第一行和第一列为1,注意碰到障碍物后面全是0

确定遍历顺序:后面的dp依赖前面的得出从前往后,从左往右

class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        int[][] dp = new int[obstacleGrid.length][obstacleGrid[0].length];
        for(int i = 0;i<obstacleGrid[0].length;i++){
            if(obstacleGrid[0][i] == 1){
                break;
            }
            dp[0][i] = 1;
        }
        for(int i = 0;i<obstacleGrid.length;i++){
            if(obstacleGrid[i][0] == 1){
                break;
            }
            dp[i][0] = 1;
        }
        for(int i = 1;i<obstacleGrid.length;i++){
            for(int j = 1;j<obstacleGrid[0].length;j++){
                if(obstacleGrid[i][j] != 1){
                    dp[i][j] = dp[i-1][j] + dp[i][j-1];
                }
            }
        } 
        return dp[obstacleGrid.length-1][obstacleGrid[0].length-1];
    }
}

8.滚动数组技巧

思路:

杨辉三角,除了0号位置和i==j的位置是1,其他都是左上角+右上角的值

一般解法:二维数组就是初始化一个dp[i][j],然后逐行遍历相加,输出指定行的值

现在要进行空间优化O(rowIndex)

如果我们使用一个一维数组dp[]:

        从前往后遍历相加:121=>131=>1341 会发现原先的2被覆盖替换为了3,导致后面的数计算错误。这时我们可以使用第二个一维数组来帮助我们记录值

class Solution {
    public List<Integer> getRow(int rowIndex) {
        List<Integer> pre = new ArrayList<Integer>();
        for (int i = 0; i <= rowIndex; ++i) {
            List<Integer> cur = new ArrayList<Integer>();
            for (int j = 0; j <= i; ++j) {
                if (j == 0 || j == i) {
                    cur.add(1);
                } else {
                    cur.add(pre.get(j - 1) + pre.get(j));
                }
            }
            pre = cur;
        }
        return pre;
    }
}

        从后往前遍历:121=>31=>331=>1331 会发现左上角和右上角的值并没被覆盖√

class Solution {
    public List<Integer> getRow(int rowIndex) {
        List<Integer> row = new ArrayList<Integer>();
        row.add(1);
        for (int i = 1; i <= rowIndex; ++i) {
            row.add(0);
            for (int j = i; j > 0; --j) {
                row.set(j, row.get(j) + row.get(j - 1));
            }
        }
        return row;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值