Dirichlet kernel and Fejer Kernel
Considered the convergence of Fourier series (or more precisely, the N-th sum SNf) of f (under some differentiability assumptions on f, essentially we need the existence of f0). This problem shows how to improve this convergence to the case without assuming the differentiability of f.
Considering square function:
Using Dirichlet kernel
D n ( x ) = 1 2 π ∑ k = − n n e i k x = 1 2 π ( 1 + 2 ∑ k = 1 n c o s ( k x ) ) = s i n ( ( n + 1 / 2 ) x ) 2 π s i n ( x / 2 ) D_n(x) = \frac{1}{2\pi} \sum_{k = -n}^{n}{e^{ikx}} = \frac{1}{2\pi} (1+2 \sum_{k = 1}^{n}{cos(kx)} ) = \frac{sin((n+1/2)x)}{2\pi sin(x/2)} Dn(x)=2π1k=−n∑neikx=2π1(1+2k=1