Mercer定理:任何半正定对称函数都可以作为核函数。
核函数作用:接受两个低维空间里的向量,可以计算选出经过某种变换后在高维空间里的向量内积。
核函数的充要条件是K矩阵是半正定的。 将K特征值分解,有V'KV=∧,K=V∧V' 经特征映射将属性值映射到特征空间Ф:xi->sqrt(λ:)*Vi: (根号对角特征值阵*第i点对应的特征向量阵的第i行阵) 核函数K(x,z)对应于特征映射Ф的核函数=<Ф(x)•Ф(z)>
如果函数K是上的映射(也就是从两个n维向量映射到实数域)。那么如果K是一个有效核函数(也称为Mercer核函数),那么当且仅当对于训练样例
,其相应的核函数矩阵是对称半正定的。