Mercer定理

Mercer定理:任何半正定对称函数都可以作为核函数。

核函数作用:接受两个低维空间里的向量,可以计算选出经过某种变换后在高维空间里的向量内积。

核函数的充要条件是K矩阵是半正定的。 将K特征值分解,有V'KV=∧,K=V∧V' 经特征映射将属性值映射到特征空间Ф:xi->sqrt(λ:)*Vi: (根号对角特征值阵*第i点对应的特征向量阵的第i行阵) 核函数K(x,z)对应于特征映射Ф的核函数=<Ф(x)•Ф(z)>

如果函数K是clip_image084[26]上的映射(也就是从两个n维向量映射到实数域)。那么如果K是一个有效核函数(也称为Mercer核函数),那么当且仅当对于训练样例clip_image065[7],其相应的核函数矩阵是对称半正定的。

在一个模型后算法中出现了clip_image090[4], 都可以常使用clip_image073[12]去替换。

将核函数形式化定义,如果原始特征内积是clip_image014[4],映射后为clip_image016[6],那么定义核函数(Kernel)为

clip_image018[8]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值