Finding Square Roots Using Newton’s Method

Let A > 0 be a positive real number. We want to show that there is a real number x with x^2 = A.  We already know that for many real numbers, such as A = 2, there is no rational number x with this property. Formally, let f(x) : = x^2 − A. We want to solve the equation f(x) = 0.

Newton gave a useful general recipe for solving equations ofthe form f(x) = 0. Say we have some approximation x(k) to a solution. He showed how to get a better approximation x(k+1). It works most of the time if your approximation is close enough to the solution.

Here’s the procedure. Go to the point ( x(k), f( x(k) ) ) and find the tangent line. Its equation is

The next approximation,x(k+1), is where this tangent line crosses the x axis.

Applied to compute square roots, so f(x) : = x^2 − A, this gives

From this, by simple algebra we find that

Pick some x(0) so that x(0)^2 > A. then equation (2) above shows that subsequent approxi-mationsx(1),x(2), . . . , are monotone decreasing. Equation (2) then shows thatthe sequencex(1) ≥ x(2) ≥ x(3)≥. . ., is monotone decreasing and non-negative. By the monotone conver-gence property, it thus converges to some limitx.

I claim thatx2=A. Rewrite (2) as

and let k -> ∞, since x(k+1)−x(k)→0 and x(k) is bounded, this is obvious.

We now know that A^(1/2) exists as a real number. then it is simple to use (1) to verify that

Equation (3) measures the error x(k+1)−A^(1/2). It shows that the error at the next step is the square of the error in the previous step. Thus, if the error at some step is roughly 10^(-6) (so 6 decimal places), then at the next step the error is roughly 10^(−12)(so 12 decimal places).

Example:To 20 decimal places,7^(1/2) = 2.6457513110645905905. Let’s see what Newton’smethod gives with the initial approximation x(0)= 3:

x1= 2.6666666666666666666

x2= 2.6458333333333333333

x3= 2.6457513123359580052

x4= 2.6457513110645905908

Remarkable accuracy.

 

Example 2:

Find the root of the equation x^2−4x−7=0 , near x=5 to the nearest thousandth.

We have our x0​=5. In order to use Newton's method, we also need to know the derivative of f. In this case, f(x) = x^2 - 4x - 7, and f′(x)=2x−4.

Using Newton's method, we get the following sequence of approximations:

We can stop now, because the thousandth and ten-thousandth digits of x2 and x3 are the same. If we were to continue, they would remain the same because we have gotten sufficiently close to the root:

Our final answer is therefore 5.317.

References:

https://www.math.upenn.edu/~kazdan/202F09/sqrt.pdf

https://brilliant.org/wiki/newton-raphson-method/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值