比赛的时候想到了用欧拉函数,但一直不知道怎么优化区间查询部分,看过标程才发现...我太菜了...什么都不会
思路主要就是质因数分解+二分。把a1 ,a2 ,...,an 每个数都进行质因数分解,用数组a存储质数x在序列中从左往右出现的位置,对于每个询问二分查找即可求出区间里有多少个质数x。要注意的是数组太大了,要用vector存储。
详细的思路就不写了,代码里有很多注释的地方,看不懂的可以取消注释输出中间变量看看,以下是AC代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int MAX=100010;
int n,m;
int L,R;
vector<int>a[MAX];
void euler(int n,int x)//欧拉函数,第x个数含有质因数i
{
for(int i=2;i*i<=n;i++)
while(n%i==0)
{
a[i].push_back(x);
n/=i;
}
if(n>1)
a[n].push_back(x);
}
bool ask(int x,int k)
{
//a[x]:含有质因子x的数的位置
int l=0,r=a[x].size()-1;
int t=-1,mid;
//cout<<"L="<<L<<" R="<<R<<endl;
while(l<=r)
{
mid=(l+r)>>1;
//cout<<" mid="<<mid<<" a[x][mid]="<<a[x][mid]<<endl;
if(a[x][mid]>=L)
r=(t=mid)-1;
else
l=mid+1;
//cout<<" l="<<l<<" r="<<r<<endl;
}
if(t<0)
return false;
//找到了要查找的下界
r=a[x].size()-1;//上界
/*cout<<"L="<<L<<" R="<<R<<" num="<<k<<endl;
cout<<"l="<<l<<" r="<<r<<endl;*/
while(k--)
{
//cout<<" t="<<t<<" a[x][t]="<<a[x][t]<<endl;
if(t>r)//个数不够
return false;
if(a[x][t]>R)//范围不对
return false;
t++;
}
return true;
}
bool solve(int n)
{
for(int i=2;i*i<=n;i++)
if(n%i==0)
{
int num=0;
while(n%i==0)
n/=i,num++;
//cout<<endl<<"i="<<i<<" num="<<num<<endl;
if(!ask(i,num))
return false;
}
if(n>1)
{
//cout<<"i="<<n<<" num=1"<<endl;
if(ask(n,1))
return true;
else
return false;
}
else
return true;
}
int main()
{
int x,t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
for(int i=2;i<MAX;i++)
a[i].clear();
for(int i=1;i<=n;i++)
{
scanf("%d",&x);
euler(x,i);
}
/*for(int i=2;i<=10;i++)
{
cout<<"i="<<i<<" 第 ";
int l=a[i].size();
for(int j=0;j<l;j++)
cout<<a[i][j]<<" ";
cout<<"个数中含有该质因子"<<endl;
}*/
while(m--)
{
scanf("%d%d%d",&L,&R,&x);
if(solve(x))
printf("Yes\n");
else
printf("No\n");
}
}
return 0;
}