百僧吃百馍
方法一:假设法解决和尚分馒头问题
第一种方法还是鸡兔同笼问题中学到的假设法,不过不能直接用,需要做一个转化。
题目中大和尚1人吃1个馒头,这个很明确,但是小和尚3人吃1个馒头就不太好处理,我们不知道1个小和尚吃几个馒头(分数需要用到乘除法,这是六年级的内容),所以我们不妨转化成:
3个小和尚吃1个馒头,如果我们把1个小和尚吃的馒头看成1份,那么1个馒头就是3份,也就是一个大和尚要吃3×3=9份,100个馒头有100×3=300份。
通过这个转化,这道题就转化成了鸡兔同笼问题。100个和尚相当于100个头,300份馒头相当于300只脚,小和尚1人吃1份、大和尚1人吃9份就相当于小和尚1只脚、大和尚9只脚。
假设这100个和尚都是小和尚,那么一共需要100×1=100份馒头;
实际上吃了300份,我们的假设少算了300-100=200份;
这是因为我们把一些大和尚当作了小和尚,1个大和尚就少算了9-1=8份馒头;
所以我们少算的200份一共对应了200÷(9-1)=25个大和尚;
小和尚的人数就是100-25=75人。
总结一下,这类问题运用假设的关键是转化,把1个小和尚吃的馒头个数转化为份数,再把大和尚吃的份数、馒头的总份数表示出来,就可以用鸡兔同笼中的假设法解题了。
方法二:分组法
这道题中1个大和尚吃3个馒头,3个小和尚吃1个馒头,如果我们把1个大和尚和3个小和尚看成1个小组,那个这个小组一共需要吃3+1=4个馒头。
这些和尚一共吃掉了100个馒头,每4个馒头分给一组和尚的话,一共可以分给100÷4=25组和尚。
1组和尚里有1个大和尚、3个小和尚,所以25组一共有25×1=25个大和尚、25×3=75个小和尚。
这就是分组法,比假设法相对来说更简单一些,但在理解分组时还是有一点难度的。