百僧吃百馍

百僧吃百馍

方法一:假设法解决和尚分馒头问题

第一种方法还是鸡兔同笼问题中学到的假设法,不过不能直接用,需要做一个转化。

题目中大和尚1人吃1个馒头,这个很明确,但是小和尚3人吃1个馒头就不太好处理,我们不知道1个小和尚吃几个馒头(分数需要用到乘除法,这是六年级的内容),所以我们不妨转化成:

3个小和尚吃1个馒头,如果我们把1个小和尚吃的馒头看成1份,那么1个馒头就是3份,也就是一个大和尚要吃3×3=9份,100个馒头有100×3=300份。

通过这个转化,这道题就转化成了鸡兔同笼问题。100个和尚相当于100个头,300份馒头相当于300只脚,小和尚1人吃1份、大和尚1人吃9份就相当于小和尚1只脚、大和尚9只脚。

假设这100个和尚都是小和尚,那么一共需要100×1=100份馒头;

实际上吃了300份,我们的假设少算了300-100=200份;

这是因为我们把一些大和尚当作了小和尚,1个大和尚就少算了9-1=8份馒头;

所以我们少算的200份一共对应了200÷(9-1)=25个大和尚;

小和尚的人数就是100-25=75人。

总结一下,这类问题运用假设的关键是转化,把1个小和尚吃的馒头个数转化为份数,再把大和尚吃的份数、馒头的总份数表示出来,就可以用鸡兔同笼中的假设法解题了。

方法二:分组法

这道题中1个大和尚吃3个馒头,3个小和尚吃1个馒头,如果我们把1个大和尚和3个小和尚看成1个小组,那个这个小组一共需要吃3+1=4个馒头。

这些和尚一共吃掉了100个馒头,每4个馒头分给一组和尚的话,一共可以分给100÷4=25组和尚。

1组和尚里有1个大和尚、3个小和尚,所以25组一共有25×1=25个大和尚、25×3=75个小和尚。

这就是分组法,比假设法相对来说更简单一些,但在理解分组时还是有一点难度的。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值