高德导航红绿灯为啥能读秒?

文章揭示了高德地图红绿灯倒计时功能背后的算法原理,通过99%的算法和1%的交管数据合作,利用大数据和多年深耕,实现交通出行的智能化和安全提升。专利显示,该功能基于挖掘红绿灯周期和车辆实时启停信息计算出倒计时和等待轮数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

386ce458fdc71fb907753051527faca1.png

来源:JavaEdge

  • 1 内部员工吐露

  • 2 真正的内幕


免责声明~

任何文章不要过度深思!

万事万物都经不起审视,因为世上没有同样的成长环境,也没有同样的认知水平,更「没有适用于所有人的解决方案」

不要急着评判文章列出的观点,只需代入其中,适度审视一番自己即可,能「跳脱出来从外人的角度看看现在的自己处在什么样的阶段」才不为俗人

怎么想、怎么做,全在乎自己「不断实践中寻找适合自己的大道」

1 内部员工吐露

每天工作其实就是负责自己片区的红绿灯,一大早就去校对时间,然后发布到后台。是的,统计出来的,而且还是人工统计,有误差请见谅

b52e0b62e25692a7434e129e4fa51c32.png
图片

[害羞]

真的是很辛苦了!不过还是希望他们记录的时候好好记,因为有的路口真的不准!

2 真正的内幕

99% 算法 + 1%交管数据合作接入。

不要怀疑算法的边界,不仅红绿灯推测上了,现在还上了建议时速的绿波带通过功能。

大数据让出行更美好,接下来也会让出行更安全!

b1d43f77e2c1700f6ba2815a66358236.png

其中称红绿灯倒计时及等待轮数都是计算得到的:

有用户点评:“这是什么黑科技?高德是怎么知道前面路口红灯还有多少时长的?”也有观点认为,高德地图接入了所在城市红绿灯的数据,因此实现了红灯计时读秒的功能。事实上,红绿灯倒计时功能的落地,并非接入现实中的红绿灯数据那般直接简单,而是高德地图多年来在交通领域深耕创新,算力进化的成果——用户在高德地图中看到的红灯倒计时,以及红灯等待轮数,都是“算”出来的结果。

好奇去检索了一下专利,还真找到了:

CN114463969A 红绿灯周期时长的挖掘方法、电子设备及计算机程序产品 高德软件公司

ccc18d4cb5d0ce401f86984d27335d67.png发明专利

粗略阅读后,感觉确实可以通过此算法确定红绿灯的周期 ,那么实现红绿灯倒计时还需要确定当前时刻距一个红绿灯周期开始的时间,这个问题或许可以利用开启导航车辆的实时启停信息实现?

数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态和成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究和神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断和细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室和科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
数据集介绍:多环境动物及人类活动目标检测数据集 一、基础信息 数据集名称:多环境动物及人类活动目标检测数据集 图片数量: - 训练集:12,599张图片 - 验证集:1,214张图片 - 测试集:607张图片 总计:14,420张图片 分类类别: - bear(熊): 森林生态系统的顶级掠食者 - bird(鸟类): 涵盖多种飞行及陆栖鸟类 - cougar(美洲狮): 山地生态关键物种 - person(人类): 自然环境与人类活动交互场景 - truck(卡车): 工业及运输场景的车辆目标 - ungulate(有蹄类动物): 包括鹿、羊等草食性哺乳动物 - wolf(狼): 群体性捕食动物代表 标注格式: YOLO格式标注,包含归一化坐标的边界框及类别标签,可直接适配YOLOv5/v7/v8等主流检测框架。 数据特性: 涵盖航拍、地面监控等多视角数据,包含昼夜不同光照条件及复杂背景场景。 二、适用场景 野生动物保护监测: 支持构建自动识别森林/草原生态系统中濒危物种的监测系统,用于种群数量统计和栖息地研究。 农业与畜牧业管理: 检测农场周边的捕食动物(如狼、美洲狮),及时预警牲畜安全风险。 智能交通系统: 识别道路周边野生动物与运输车辆,为自动驾驶系统提供碰撞预警数据支持。 生态研究数据库: 提供7类典型生物与人类活动目标的标注数据,支撑生物多样性分析与人类活动影响研究。 安防监控增强: 适用于自然保护区监控系统,同时检测可疑人员(person)与车辆(truck)的非法闯入。 三、数据集优势 多场景覆盖: 包含森林、公路、山地等多类型场景,覆盖从独居动物(cougar)到群体生物(wolf)的检测需求。 类别平衡设计: 7个类别经专业数据采样,避免长尾分布问题,包含: - 3类哺乳动物捕食者(bear/cougar/wolf) - 2类环境指示物种(bird/ung
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值