线性代数小结03------行列式的性质、计算和例题

1.行列式的定义\left | A_{n\times n} \right |=\sum_{j_{1}j_{2}..j_{n}}^{}(-1)^{\tau (j_{1}j_{2}..j_{n})}a_{1j_{1}}a_{2j_{2}}...a_{nj_{n}}

2.特殊行列式的计算

  • 箭形行列式
  • 不对称三角行列式
  • 双斜线行列式
  • 三斜线行列式
  • 海森堡行列式
  • 范德蒙行列式
  • 逐差行列式

~箭形行列式

        D_{n}=\left | \begin{matrix} a_{1} &1 &1 &... &1 \\ 1& a_{2} &0 &... &0 \\ 1&0 &a_{3} & ...&0 \\ ... & ... & ... &... &... \\ 1 & 0 & 0 &... &a_{n} \end{matrix} \right |=\left | \begin{matrix} (a_{1}-\frac{1}{a_{2}}-...-\frac{1}{a_{n}}) &1 &1 &... &1 \\ 0& a_{2}&0 &... & 0\\ 0& 0& a_{3} &... & 0\\ ...& ... &... &... & ...\\ 0&0 & 0& ... & a_{n} \end{matrix} \right |

=\prod_{i=2}^{n}a_{i}(a_{1}-\sum_{i=2}^{n}\frac{1}{a_{i}} )

~不对称三角行列式

D_{n}=\left | \begin{matrix} x_{1} &a & a & ...&a \\ b&x_{2} &a &... &a \\ b& b &x_{3} &... &a \\ ...& ... &... &... & ...\\ b& b& b & ... &x_{n} \end{matrix} \right |=\left | \begin{matrix} x_{1} & a &a &... &a+0 \\ b & x_{2} &a &... &a+0 \\ b&b &x_{3} &... &a+0 \\ ...&... &... &... &... \\ b& b & b & ...& b+x_{n}-b \end{matrix} \right |=\left | \begin{matrix} x_{1} &a &a &... &a \\ b& x_{2}& a& ...& a\\ b&b &x_{3} &... &a \\ ...& ... & ... & ...& ...\\ b &b &b &... &b \end{matrix} \right |+\left | \begin{matrix} x_{1} &a & a & ... & 0\\ b &x_{2} &a & ... &0 \\ b& b& x_{3}& ...& 0\\ b&b &b & ... & ...\\ b&b &b & ...&x_{n}-b \end{matrix} \right |=\left | \begin{matrix} x_{1}-a & 0 &... &... &a \\ b-a& x_{2}-a & ... &... &a \\ ...& ... & ... & ... & a\\ b-a& b-a &... &x_{n-1}-a & a\\ 0& 0 & 0& 0& b \end{matrix} \right |+(x_{n}-b)D_{n-1}

现在再将x_{n}=a+x_{n}-a

又可得D_{n}=a(x_{1}-b)(x_{2}-b)...(x_{n-1}-b)+(x_{n}-a)D_{n-1}

最终得:

D_{n}=\frac{1}{a-b}[a\prod _{i=1}^n(x_{i}-b)-b\prod _{j=1}^{n}(x_{j}-a)]

~双斜线行列式

D_{n}=\left | \begin{matrix} a_{1} &b_{1} & 0&... &0 \\ 0& a_{2} &b_{2} & ...&0 \\ 0&0 &... & ... &... \\ 0&0 &0 & a_{n-1}& b_{n-1}\\ b_{n}& 0& 0& 0& a_{n} \end{matrix} \right |

按第一列展开

D_{n}=a_{1}a_{2}...a_{n}+(-1)^{n+1}b_{1}b_{2}...b_{n}

--------------------------------------------------------------------------------------------------------

D_{2n}=\begin{vmatrix} a_{n} & & & & & & &b_{n} \\ & a_{n-1}& & & & & b_{n-1}& \\ & & . & & & . & & \\ & & &a_{1} &b_{1} & & & \\ & & & c_{1} &d_{1} & & & \\ & & .& & & . & & \\ & c_{n-1}& & & & & d_{n-1}& \\ c_{n}& & & & & & & d_{n} \end{vmatrix}

两次展开

D_{2n}=(a_{n}d_{n}-b_{n}c_{n})D_{2(n-1)}

=\prod _{i=1}^{n}(a_{i}d_{i}-b_{i}c_{i})

或者使用拉普拉斯定理,按第一行和第2n行展开可得到同样的结论

~三斜线行列式

D_{n}=\left | \begin{matrix} a &b & & & \\ c&a &b & & \\ & c&\ddots &\ddots & \\ & &\ddots & \ddots & b\\ & & & c &a \end{matrix} \right |

按第一列展开

D_{n}=aD_{n-1}-bcD_{n-2}

然后解特征方程可得

x_{1}=\frac{a+\sqrt{a^2-4bc}}{2};x_{2}=\frac{a-\sqrt{a^2-4bc}}{2}

则:D_{n}=\frac{x_{1}^{n+1}-x_{2}^{n+1}}{x_{1}-x_{2}}

~海森堡行列式

D_{n}=\left | \begin{matrix} 1 & 2 &3 &... &n-1 &n \\ 1 &-1 &0 &... &0 &0 \\ 0 &2 &-2 & ... &0 &0 \\ ... & ... & ... &... &... &... \\ ... &... &... &n-2 &2-n &0 \\ 0&0 &0 &... &n-1 & 1-n \end{matrix} \right |

将各列加到第一列,然后按第一列展开可得D_{n}=(-1)^{n-1}\frac{(n+1)!}{2}

~范德蒙行列式

D_{n}=\begin{vmatrix} 1 & 1 &... &1 \\ x_{1}&x_{2} & ... & x_{n}\\ \vdots & \vdots & & \vdots \\ x_{1}^{n-1}&x_{2}^{n-1} &... & x_{n}^{n-1} \end{vmatrix}

\left | D_{n} \right |=\prod_{1\leq j<i\leq n }(x_{i}-x_{j})

import numpy as np

a = np.linalg.det([[1,1],[2,3]])
print(a)

1.0

 3.性质

  • det(I)=1
  • 交换一次行或列,行列式符号变化
  • 单行或单列的线性性(对于多行并不成立)
  • 行列式两行相等时,行列式为0
  • 行列式的第k行减去第i行的l倍,行列式保持不变
  • 上三角矩阵的行列式等于对角线的乘积
  • 行列式为0的矩阵是奇异矩阵
  • det(AB)=det(A)det(B)
  • det(A^T)=det(A)

 

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

River Chandler

谢谢,我会更努力学习工作的!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值