线性代数中特殊行列式的计算

引言

在初次学习线性代数的行列式时,如何计算行列式的值特别关键,也是一种考验基本功的题型。但对于初学者来说,面对眼花缭乱的行列式不免有些难以下手,所以我在此罗列一些常见的行列式的计算方法,希望对大家有所启发。


一、箭型行列式

基本特征:这种行列式除了第一行和第一列以及主对角线上存在元素以外,其他元素都是0,形如箭头。
计算方法:对于这种行列式可利用行列式的性质化为上(下)三角行列式来计算,即利用倍加的原理将箭头的一端消掉。

如:
[ a 1 b b ⋯ b c a 2 0 ⋯ 0 c 0 a 3 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ c 0 0 ⋯ a n ] \begin{bmatrix} {a_{1}}&{b}&{b}&{\cdots}&{b}\\ {c}&{a_{2}}&{0}&{\cdots}&{0}\\ {c}&{0}&{a_{3}}&{\cdots}&{0}\\ {\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {c}&{0}&{0}&{\cdots}&{a_{n}}\\ \end{bmatrix} a1cccba200b0a30b00an
用第一列的加上第二列的 − c a 2 -\frac{c}{a_{2}} a2c,第三列的 − c a 3 -\frac{c}{a_{3}} a3c…第n列的 − c a n -\frac{c}{a_{n}} anc
[ a 1 − b c ( ∑ i = 1 n 1 a i ) b b ⋯ b 0 a 2 0 ⋯ 0 0 0 a 3 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 ⋯ a n ] = [ a 1 − b c ( ∑ i = 1 n 1 a i ) ] ∏ k = 2 n a k \begin{bmatrix} {a_{1}-bc(\sum_{i=1}^n \frac{1}{a_{i}}) }&{b}&{b}&{\cdots}&{b}\\ {0}&{a_{2}}&{0}&{\cdots}&{0}\\ {0}&{0}&{a_{3}}&{\cdots}&{0}\\ {\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {0}&{0}&{0}&{\cdots}&{a_{n}}\\ \end{bmatrix}=[a_{1}-bc(\sum_{i=1}^n \frac{1}{a_{i}})]\prod_{k=2}^{n}a_{k} a1bc(i=1nai1)000ba200b0a30b00an =[a1bc(i=1nai1)]k=2nak

需要注意的是例子中的行列式里的b和c可以是相同的或者不同的元素,方法都是类似的,当然具体情况还得具体分析。

二、两三角型行列式

基本特征:这类行列式的的特点是对角线上方的元素都是 b b b,对角线下方的元素都是 c c c ,对角线可以是任意元素。

如: [ a 1 b b ⋯ b c a 2 b ⋯ b c c a 3 ⋯ b ⋮ ⋮ ⋮ ⋱ ⋮ c c c ⋯ a n ] \begin{bmatrix} {a_{1}}&{b}&{b}&{\cdots}&{b}\\ {c}&{a_{2}}&{b}&{\cdots}&{b}\\ {c}&{c}&{a_{3}}&{\cdots}&{b}\\ {\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {c}&{c}&{c}&{\cdots}&{a_{n}}\\ \end{bmatrix} a1cccba2ccbba3cbbban

2.1 当b=c时

计算方法:由于行列式中存在许多相同的元素,故可采用各行(列)与第一行(列)作差的方法来将其化为箭型行列式。

如: [ a 1 c c ⋯ c c a 2 c ⋯ c c c a 3 ⋯ c ⋮ ⋮ ⋮ ⋱ ⋮ c c c ⋯ a n ] \begin{bmatrix} {a_{1}}&{c}&{c}&{\cdots}&{c}\\ {c}&{a_{2}}&{c}&{\cdots}&{c}\\ {c}&{c}&{a_{3}}&{\cdots}&{c}\\ {\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {c}&{c}&{c}&{\cdots}&{a_{n}}\\ \end{bmatrix} a1cccca2cccca3ccccan

用第2、3…n列加上第一列的 − 1 -1 1倍可得到箭型行列式

[ a 1 c − a 1 c − a 1 ⋯ c − a 1 c a 2 − c 0 ⋯ 0 c 0 a 3 − c ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ c 0 0 ⋯ a n − c ] = [ a 1 − c ( c − a 1 ) ( ∑ i = 2 n 1 a i − c ) c − a 1 c − a 1 ⋯ c − a 1 0 a 2 − c 0 ⋯ 0 0 0 a 3 − c ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 ⋯ a n − c ] \begin{bmatrix} {a_{1}}&{c-a_{1}}&{c-a_{1}}&{\cdots}&{c-a_{1}}\\ {c}&{a_{2}-c}&{0}&{\cdots}&{0}\\ {c}&{0}&{a_{3}-c}&{\cdots}&{0}\\ {\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {c}&{0}&{0}&{\cdots}&{a_{n}-c}\\ \end{bmatrix}= \begin{bmatrix} {a_{1}-c(c-a_{1})(\sum_{i=2}^n\frac{1}{a_{i}-c})}&{c-a_{1}}&{c-a_{1}}&{\cdots}&{c-a_{1}}\\ {0}&{a_{2}-c}&{0}&{\cdots}&{0}\\ {0}&{0}&{a_{3}-c}&{\cdots}&{0}\\ {\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {0}&{0}&{0}&{\cdots}&{a_{n}-c}\\ \end{bmatrix} a1cccca1a2c00ca10a3c0ca100anc = a1c(ca1)(i=2naic1)000ca1a2c00ca10a3c0ca100anc

= [ a 1 − c ( c − a 1 ) ( ∑ i = 2 n 1 a i − c ) ] ∏ i = 2 n ( a i − c ) [a_{1}-c(c-a_{1})(\sum_{i=2}^n\frac{1}{a_{i}-c})]\prod_{i=2}^n(a_{i}-c) [a1c(ca1)(i=2naic1)]i=2n(aic)

2.2 b≠c时

计算方法:对这种行列式一般采用拆行的方法,具体演示如下。
第一步:拆行

D n = [ a 1 b b ⋯ b c a 2 b ⋯ b c c a 3 ⋯ b ⋮ ⋮ ⋮ ⋱ ⋮ c c c ⋯ a n ] = [ a 1 b b ⋯ b + 0 c a 2 b ⋯ b + 0 c c a 3 ⋯ b + 0 ⋮ ⋮ ⋮ ⋱ ⋮ c c c ⋯ a n − b + b ] D_{n}=\begin{bmatrix} {a_{1}}&{b}&{b}&{\cdots}&{b}\\ {c}&{a_{2}}&{b}&{\cdots}&{b}\\ {c}&{c}&{a_{3}}&{\cdots}&{b}\\ {\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {c}&{c}&{c}&{\cdots}&{a_{n}}\\ \end{bmatrix}= \begin{bmatrix} {a_{1}}&{b}&{b}&{\cdots}&{b+0}\\ {c}&{a_{2}}&{b}&{\cdots}&{b+0}\\ {c}&{c}&{a_{3}}&{\cdots}&{b+0}\\ {\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {c}&{c}&{c}&{\cdots}&{a_{n}-b+b}\\ \end{bmatrix} Dn= a1cccba2ccbba3cbbban = a1cccba2ccbba3cb+0b+0b+0anb+b

= [ a 1 b b ⋯ b c a 2 b ⋯ b c c a 3 ⋯ b ⋮ ⋮ ⋮ ⋱ ⋮ c c c ⋯ b ] + [ a 1 b b ⋯ 0 c a 2 b ⋯ 0 c c a 3 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ c c c ⋯ a n − b ] =\begin{bmatrix} {a_{1}}&{b}&{b}&{\cdots}&{b}\\ {c}&{a_{2}}&{b}&{\cdots}&{b}\\ {c}&{c}&{a_{3}}&{\cdots}&{b}\\ {\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {c}&{c}&{c}&{\cdots}&{b}\\ \end{bmatrix}+\begin{bmatrix} {a_{1}}&{b}&{b}&{\cdots}&{0}\\ {c}&{a_{2}}&{b}&{\cdots}&{0}\\ {c}&{c}&{a_{3}}&{\cdots}&{0}\\ {\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {c}&{c}&{c}&{\cdots}&{a_{n}-b}\\ \end{bmatrix} = a1cccba2ccbba3cbbbb + a1cccba2ccbba3c000anb

第二步:第一个行列式利用前面的 1 1 1 n − 1 n-1 n1列减去第 n n n
第三步:将第一个行列式对第 n n n行进行展开,将第二个行列式对第 n n n列进行展开

D n = [ a 1 − b 0 0 ⋯ b c − b a 2 − b 0 ⋯ b c − b c − b a 3 − b ⋯ b ⋮ ⋮ ⋮ ⋱ ⋮ c − b c − b c − b ⋯ b ] + ( a n − b ) D n − 1 = b ∏ i = 1 n ( a i − b ) + ( a n − b ) D n − 1 D _{n}=\begin{bmatrix} {a_{1}-b}&{0}&{0}&{\cdots}&{b}\\ {c-b}&{a_{2}-b}&{0}&{\cdots}&{b}\\ {c-b}&{c-b}&{a_{3}-b}&{\cdots}&{b}\\ {\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {c-b}&{c-b}&{c-b}&{\cdots}&{b}\\ \end{bmatrix}+(a_{n}-b)D_{n-1} =b\prod_{i=1}^{n}(a_{i}-b)+(a_{n}-b)D_{n-1} Dn= a1bcbcbcb0a2bcbcb00a3bcbbbbb +(anb)Dn1=bi=1n(aib)+(anb)Dn1

第四步:而如果我们一开始将 a n a_{n} an拆为 a n − a + a a_{n}-a+a ana+a则会得到
D n ′ = a ∏ i = 1 n ( a i − b ) + ( a n − a ) D n − 1 D_{n}'=a\prod_{i=1}^{n}(a_{i}-b)+(a_{n}-a)D_{n-1} Dn=ai=1n(aib)+(ana)Dn1
( a n − a ) D n − ( a n − b ) D n ′ (a_{n}-a)D_{n}-(a_{n}-b)D_{n}' (ana)Dn(anb)Dn
( a − b ) D n = a ∏ i = 1 n ( a i − b ) − b ∏ i = 1 n ( a i − a ) (a-b)D_{n}=a\prod_{i=1}^{n}(a_{i}-b)-b\prod_{i=1}^n(a_{i}-a) (ab)Dn=ai=1n(aib)bi=1n(aia)

最终我们可以解出此行列式,这里同样需要提醒的是切记不能将其作为公式来记忆,实际情况可能会比这更复杂,需要具体问题具体分析。

三、两条线型行列式

基本特征:这类行列式的特点是除了主(次)对角线以外或与其相邻的一条斜线组成的两条线加四个顶点中的某个点外,其他元素均为0。

计算方法:运用拉普拉斯定理对行列式展开。

如: [ a n b n a n − 1 b n − 1 ⋱ ⋅ ⋅ a 1 b 1 c 1 d 1 ⋅ ⋅ ⋱ c n − 1 d n − 1 c n d n ] \begin{bmatrix} {a _{n}}&&&&&&&{b_{n}}\\ {}&{a_{n-1}}&&&&&{b_{n-1}}\\ {}&{}&{\ddots}&&&{\cdot^{\cdot}}\\ {}&{}&{}&{a_{1}}&{b_{1}}\\ {}&{}&{}&{c_{1}}&{d_{1}}\\ {}&{}&{\cdot^{\cdot}}&&&{\ddots}\\ {}&{c_{n-1}}&&&&&{d_{n-1}}\\ {c _{n}}&&&&&&&{d_{n}}\\ \end{bmatrix} ancnan1cn1a1c1b1d1bn1dn1bndn

对第 n n n行和第 n + 1 n+1 n+1行展开

( a 1 d 1 − c 1 b 1 ) [ a n b n a n − 1 b n − 1 ⋱ ⋅ ⋅ a 2 b 2 c 2 d 2 ⋅ ⋅ ⋱ c n − 1 d n − 1 c n d n ] (a_{1}d_{1}-c_{1}b_{1})\begin{bmatrix} {a _{n}}&&&&&&&{b_{n}}\\ {}&{a_{n-1}}&&&&&{b_{n-1}}\\ {}&{}&{\ddots}&&&{\cdot^{\cdot}}\\ {}&{}&{}&{a_{2}}&{b_{2}}\\ {}&{}&{}&{c_{2}}&{d_{2}}\\ {}&{}&{\cdot^{\cdot}}&&&{\ddots}\\ {}&{c_{n-1}}&&&&&{d_{n-1}}\\ {c _{n}}&&&&&&&{d_{n}}\\ \end{bmatrix} (a1d1c1b1) ancnan1cn1a2c2b2d2bn1dn1bndn

重复上述过程最终可以得到: D n = ∏ i = 1 n ( a i d i − c i b i ) D_{n}=\prod_{i=1}^{n}(a_{i}d_{i}-c_{i}b_{i}) Dn=i=1n(aidicibi)

又如: [ a 1 b 1 a 2 b 2 a 3 ⋯ ⋯ ⋯ ⋯ a n − 1 b n − 1 b n a n ] \begin{bmatrix} {a _{1}}&{b_{1}}\\ {}&{a_{2}}&{b_{2}}&&\\ {}&{}&{a_{3}}&{\cdots}\\ {}&{}&{\cdots}&{\cdots}\\ {}&{}&{\cdots}&{a_{n-1}}&{b_{n-1}}\\ {b_{n}}&{}&&&{a_{n}}\\ \end{bmatrix} a1bnb1a2b2a3an1bn1an

对行列式的第 n n n行进行展开有:
D n = a n ∏ i = 1 n − 1 a i + ( − 1 ) n + 1 b n ∏ i = 1 n − 1 b i D_{n}=a_{n}\prod_{i=1}^{n-1}a_{i}+(-1)^{n+1}b_{n}\prod_{i=1}^{n-1}b_{i} Dn=ani=1n1ai+(1)n+1bni=1n1bi

四、Hessenberg行列式

基本特征:除主(次)对角线及与其相邻的斜线,加上第一行(列)或第 n n n行(列)外,其他元素均为0

计算方法:将第一行(列)元素化简到只有一个非零元素之后降阶。

如: [ 1 2 3 ⋯ n − 1 n 1 − 1 2 − 2 ⋯ ⋯ n − 2 2 − n n − 1 1 − n ] \begin{bmatrix} {1}&{2}&{3}&{\cdots}&{n-1}&{n}\\ {1}&{-1}&&&\\ &{2}&{-2}&&\\ {}&{}&{\cdots}&{\cdots}&{}&{}\\ &&&{n-2}&{2-n}\\ &&&&{n-1}&{1-n}\\ \end{bmatrix} 1121232n2n12nn1n1n

观察发现,除了第一行的元素不是相反数以外,从第二行开始一直到第 n n n行都是并列的两个相反数,所以可以通过将各列的元素都加到第一列,将第一列化简为一个元素1之后再对第一行展开即:

D n = [ n ( n + 1 ) 2 2 3 ⋯ n − 1 n 0 − 1 2 − 2 ⋯ ⋯ n − 2 2 − n n − 1 1 − n ] = n ( n + 1 ) 2 [ − 1 2 − 2 ⋯ ⋯ n − 2 2 − n n − 1 1 − n ] D_{n}=\begin{bmatrix} {\frac{n(n+1)}{2}}&{2}&{3}&{\cdots}&{n-1}&{n}\\ {0}&{-1}&&&\\ &{2}&{-2}&&\\ {}&{}&{\cdots}&{\cdots}&{}&{}\\ &&&{n-2}&{2-n}\\ &&&&{n-1}&{1-n}\\ \end{bmatrix}=\frac{n(n+1)}{2}\begin{bmatrix} {-1}&&&\\ {2}&{-2}&&\\ {}&{\cdots}&{\cdots}&{}&{}\\ &&{n-2}&{2-n}\\ &&&{n-1}&{1-n}\\ \end{bmatrix} Dn= 2n(n+1)021232n2n12nn1n1n =2n(n+1) 122n22nn11n

我们不难发现行列式依然可以通过上述方法继续化简,故我们不妨故技重施,最后可以得到行列式的值为:
D n = ( n + 1 ) ! 2 ( − 1 ) n − 1 D_{n}=\frac{(n+1)!}{2}(-1)^{n-1} Dn=2(n+1)!(1)n1

Hessenberg行列式的解法多种多样,这里我只是列举了其中一种解法。

五、三对角型行列式

基本特征:型如其名,该行列式的结构具有高度的重复性,再降阶后依然可以保持自身的结构, 最重要的是除了三对角以外其余元素均为0
计算方法:对于这种行列式一般采用递推的方法,具体操作如下:
例:

D n = [ x y 0 ⋯ 0 0 y x y ⋯ 0 0 0 y x ⋯ 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 ⋯ x y 0 0 0 ⋯ y x ] D_{n}=\begin{bmatrix} {x }&{y}&{0}&{\cdots}&{0}&0\\ {y}&{x}&{y}&{\cdots}&{0}&0\\ {0}&{y}&{x}&{\cdots}&{0}&0\\ {\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}&{\vdots}\\ {0}&{0}&{0}&{\cdots}&x&y\\ {0}&{0}&{0}&{\cdots}&y&x \end{bmatrix} Dn= xy000yxy000yx00000xy000yx

对该行列式按第一行展开有:
D n = x D n − 1 − y 2 D n − 2 D_{n}=xD_{n-1}-y^{2}D_{n-2} Dn=xDn1y2Dn2
观察发现此递推公式为二阶齐次线性差分方程。故可以用解差分方程的方法来解

解特征方程 r 2 − x r + y 2 = 0 r^{2}-xr+y^{2}=0 r2xr+y2=0得:

r 1 = x + x 2 − 4 y 2 2 , r 2 = x − x 2 − 4 y 2 2 r_{1}=\frac{x+\sqrt{x^{2}-4y^{2}}}{2}, r_{2}=\frac{x-\sqrt{x^{2}-4y^{2}}}{2} r1=2x+x24y2 ,r2=2xx24y2

D n = x 1 n + 1 − x 2 n + 1 x 1 − x 2 D_{n}={\frac{x_{1}^{n+1}-x_{2}^{n+1}}{x_{1}-x_{2}}} Dn=x1x2x1n+1x2n+1

这个行列式的公式可以根据自己的需要记忆,但最重要的是掌握递推的方法。

六、各行元素和相等的行列式

基本特征:这类行列式的所有行或列的元素加起来后值相等

计算方法:将行列式所有行(列)的元素加到第一行(列),提取公因式,再把每一行(列)都减去第一行(列),一般可以达到化简行列式的效果

如: [ 1 + a 1 a 1 a 1 ⋯ a 1 a 2 1 + a 2 a 2 ⋯ a 2 a 3 a 3 1 + a 3 ⋯ a 3 ⋮ ⋮ ⋮ ⋱ ⋮ a n a n a n ⋯ 1 + a n ] \begin{bmatrix} {1+a_{1}}&{a_{1}}&{a_{1}}&{\cdots}&{a_{1}}\\ {a_{2}}&{1+a_{2}}&{a_{2}}&{\cdots}&{a_{2}}\\ {a_{3}}&{a_{3}}&{1+a_{3}}&{\cdots}&{a_{3}}\\ {\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{n}}&{a_{n}}&{a_{n}}&{\cdots}&{1+a_{n}}\\ \end{bmatrix} 1+a1a2a3ana11+a2a3ana1a21+a3ana1a2a31+an

观察发现,每一列的行元素加起来都是 1 + ∑ i = 1 n a i 1+\sum_{i=1}^{n}a_{i} 1+i=1nai将第2行至第 n n n行都加到第一行得:
[ 1 + ∑ i = 1 n a i 1 + ∑ i = 1 n a i 1 + ∑ i = 1 n a i ⋯ 1 + ∑ i = 1 n a i a 2 1 + a 2 a 2 ⋯ a 2 a 3 a 3 1 + a 3 ⋯ a 3 ⋮ ⋮ ⋮ ⋱ ⋮ a n a n a n ⋯ 1 + a n ] \begin{bmatrix} {1+\sum_{i=1}^{n}a_{i}}&{1+\sum_{i=1}^{n}a_{i}}&{1+\sum_{i=1}^{n}a_{i}}&{\cdots}&{1+\sum_{i=1}^{n}a_{i}}\\ {a_{2}}&{1+a_{2}}&{a_{2}}&{\cdots}&{a_{2}}\\ {a_{3}}&{a_{3}}&{1+a_{3}}&{\cdots}&{a_{3}}\\ {\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{n}}&{a_{n}}&{a_{n}}&{\cdots}&{1+a_{n}}\\ \end{bmatrix} 1+i=1naia2a3an1+i=1nai1+a2a3an1+i=1naia21+a3an1+i=1naia2a31+an

= ( 1 + ∑ i = 1 n a i ) [ 1 1 1 ⋯ 1 a 2 1 + a 2 a 2 ⋯ a 2 a 3 a 3 1 + a 3 ⋯ a 3 ⋮ ⋮ ⋮ ⋱ ⋮ a n a n a n ⋯ 1 + a n ] =(1+\sum_{i=1}^{n}a_{i})\begin{bmatrix} {1}&{1}&{1}&{\cdots}&{1}\\ {a_{2}}&{1+a_{2}}&{a_{2}}&{\cdots}&{a_{2}}\\ {a_{3}}&{a_{3}}&{1+a_{3}}&{\cdots}&{a_{3}}\\ {\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{n}}&{a_{n}}&{a_{n}}&{\cdots}&{1+a_{n}}\\ \end{bmatrix} =(1+i=1nai) 1a2a3an11+a2a3an1a21+a3an1a2a31+an

再从第二列开始加上第一列的 − 1 -1 1倍得:
= ( 1 + ∑ i = 1 n a i ) [ 1 0 0 ⋯ 0 a 2 1 0 ⋯ 0 a 3 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ a n 0 0 ⋯ 1 ] = 1 + ∑ i = 1 n a i =(1+\sum_{i=1}^{n}a_{i})\begin{bmatrix} {1}&{0}&{0}&{\cdots}&{0}\\ {a_{2}}&{1}&{0}&{\cdots}&{0}\\ {a_{3}}&{0}&{1}&{\cdots}&{0}\\ {\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}\\ {a_{n}}&{0}&{0}&{\cdots}&{1}\\ \end{bmatrix}=1+\sum_{i=1}^{n}a_{i} =(1+i=1nai) 1a2a3an010000100001 =1+i=1nai

这类行列式非常常见,提取公因式的方法也非常实用。

七、相邻两行(列)元素相差 k k k倍或相差1的行列式

7.1 相邻两行(列)元素相差1的行列式

计算方法:一般采用逐行(列)作差的方法,即可出现大量的 1 1 1 − 1 -1 1的元素,进而便于化简行列式。

如: [ 0 1 2 ⋯ n − 2 n − 1 1 0 1 ⋯ n − 3 n − 2 2 1 0 ⋯ n − 4 n − 3 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ n − 2 n − 3 n − 4 ⋯ 0 1 n − 1 n − 2 n − 3 ⋯ 1 0 ] \begin{bmatrix} {0}&{1}&{2}&{\cdots}&{n-2}&{n-1}\\ {1}&{0}&{1}&{\cdots}&{n-3}&{n-2}\\ {2}&{1}&{0}&{\cdots}&{n-4}&{n-3}\\ {\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}&{\vdots}\\ {n-2}&{n-3}&{n-4}&{\cdots}&{0}&{1}\\ {n-1}&{n-2}&{n-3}&{\cdots}&{1}&{0}\\ \end{bmatrix} 012n2n1101n3n2210n4n3n2n3n401n1n2n310

将行列式依次左列减去右列有:
[ − 1 − 1 − 1 ⋯ − 1 n − 1 1 − 1 − 1 ⋯ − 1 n − 2 1 1 − 1 ⋯ − 1 n − 3 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 1 1 1 ⋯ − 1 1 1 1 1 ⋯ 1 0 ] \begin{bmatrix} {-1}&{-1}&{-1}&{\cdots}&{-1}&{n-1}\\ {1}&{-1}&{-1}&{\cdots}&{-1}&{n-2}\\ {1}&{1}&{-1}&{\cdots}&{-1}&{n-3}\\ {\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}&{\vdots}\\ {1}&{1}&{1}&{\cdots}&{-1}&{1}\\ {1}&{1}&{1}&{\cdots}&{1}&{0}\\ \end{bmatrix} 11111111111111111111n1n2n310

再将行列式的第二行至第 n n n行加上第一行有:
[ − 1 − 1 − 1 ⋯ − 1 n − 1 0 − 2 − 2 ⋯ − 2 2 n − 3 0 0 − 2 ⋯ − 2 2 n − 4 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 ⋯ − 2 n 0 0 0 ⋯ 0 n − 1 ] = ( − 1 ) n − 1 ( n − 1 ) 2 n − 2 \begin{bmatrix} {-1}&{-1}&{-1}&{\cdots}&{-1}&{n-1}\\ {0}&{-2}&{-2}&{\cdots}&{-2}&{2n-3}\\ {0}&{0}&{-2}&{\cdots}&{-2}&{2n-4}\\ {\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}&{\vdots}\\ {0}&{0}&{0}&{\cdots}&{-2}&{n}\\ {0}&{0}&{0}&{\cdots}&{0}&{n-1}\\ \end{bmatrix}=(-1)^{n-1}(n-1)2^{n-2} 10000120001220012220n12n32n4nn1 =(1)n1(n1)2n2

7.2 相邻两行(列)元素相差k倍的行列式

计算方法:一般采用前行(列)加上后行(列)的 − k -k k倍,即可达到化简行列式的目的。

如:
[ 1 a a 2 ⋯ a n − 2 a n − 1 a n − 1 1 a ⋯ a n − 3 a n − 2 a n − 2 a n − 1 1 ⋯ a n − 4 a n − 3 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ a 2 a 3 a 4 ⋯ 1 a a a 2 a 3 ⋯ a n − 1 1 ] \begin{bmatrix} {1}&{a}&{a^{2}}&{\cdots}&{a^{n-2}}&{a^{n-1}}\\ {a^{n-1}}&{1}&{a}&{\cdots}&{a^{n-3}}&{a^{n-2}}\\ {a^{n-2}}&{a^{n-1}}&{1}&{\cdots}&{a^{n-4}}&{a^{n-3}}\\ {\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}&{\vdots}\\ {a^{2}}&{a^{3}}&{a^{4}}&{\cdots}&{1}&{a}\\ {a}&{a^{2}}&{a^{3}}&{\cdots}&{a^{n-1}}&{1}\\ \end{bmatrix} 1an1an2a2aa1an1a3a2a2a1a4a3an2an3an41an1an1an2an3a1

行列式的前行加上后行的 − k -k k倍有:
[ 1 − a n 0 0 ⋯ 0 0 0 1 − a n 0 ⋯ 0 0 0 0 1 − a n ⋯ 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 ⋯ 1 − a n 0 a a 2 a 3 ⋯ a n − 1 1 ] = ( 1 − a n ) n − 1 \begin{bmatrix} {1-a^{n}}&{0}&{0}&{\cdots}&{0}&{0}\\ {0}&{1-a^{n}}&{0}&{\cdots}&{0}&{0}\\ {0}&{0}&{1-a^{n}}&{\cdots}&{0}&{0}\\ {\vdots}&{\vdots}&{\vdots}&{\ddots}&{\vdots}&{\vdots}\\ {0}&{0}&{0}&{\cdots}&{1-a^{n}}&{0}\\ {a}&{a^{2}}&{a^{3}}&{\cdots}&{a^{n-1}}&{1}\\ \end{bmatrix}=(1-a^{n})^{n-1} 1an000a01an00a2001an0a30001anan100001 =(1an)n1


总结

行列式的计算只是基本功,总结再多的方法而不去实践也是没用的。上述的每种行列式都有着不唯一的解法,就比如Hessenberg行列式还可以用递推的方法求解。所以我想说的是计算行列式并不只是计算,而是一种探索的过程。

  • 6
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值