什么是聚类?

一、聚类的概念

        聚类是一种无监督学习方法,其目的是将数据集中的样本划分成若干个彼此相似的组或“簇”。聚类算法通过分析数据的内在结构,将相似的数据点归为同一簇,同时使得不同簇之间的差异最大化。聚类的结果可以帮助我们理解数据的分布特征,发现数据的潜在模式,以及为后续的数据分析和决策提供依据。

二、聚类算法的特点

        聚类的主要特点包括:

1、无监督

        聚类不需要预先标记的标签,算法自行发现数据的分组。这一般是通过欧氏距离、余弦相似度等度量指标实现的。

2、分组

        聚类算法将数据点分配到不同的簇中,使得同一簇内的点尽可能相似,而不同簇之间的点尽可能不同。

3、特征学习

        聚类可以揭示数据的内在特征和结构。

三、常见聚类算法

1、K-Means

                最常见的聚类算法之一,通过迭代优化簇中心(质心)来最小化簇内样本与簇中心的距离之和。

2、层次聚类

        通过构建一个多层次的嵌套簇树来组织数据,可以是自底向上的聚合或自顶向下的分裂。

3、DBSCAN

        基于密度的聚类算法,可以识别任意形状的簇,并且能够处理噪声点。

四、聚类和分类

1、是否有监督

        分类通常是指监督学习,这意味着在训练模型时,我们有一组预先标记的数据,模型通过学习这些标记来学习如何将新的数据点分配到正确的类别。而聚类是一种无监督学习方法,没有预先定义的类别标签。聚类算法试图将数据点分组,使得同一簇内的点尽可能相似,而不同簇之间的点尽可能不同。从笔者的角度看,只看结果其实聚类和分类是一样的,都是把某一个样本划分到某一类中,两者最大的不同就在于算法实现的方式上。

2、目标

        分类算法通常基于已知的类别信息来构建决策边界。聚类的目标是探索数据的内在结构,发现数据中的模式和分组,而不依赖于预先定义的标签。所以遇到没有标签的数据时,作为探索分析的第一步,我们往往都会采用聚类算法(优选DBSCAN之类的不需要预先指定类簇数目的算法)看看数据的分布。

3、评估方法

        分类的性能通常通过准确率、精确率、召回率、F1分数、ROC曲线和AUC值等指标来评估。由于没有预先定义的标签,聚类结果的评估通常更复杂,可使用轮廓系数、Davies-Bouldin指数、Calinski-Harabasz指数等指标。

五、聚类算法应用

        这里使用K-Means作为示例。

# 导入必要的库
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt

# 生成模拟数据集
X, y_true = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)

# 创建 KMeans 实例,设置簇的数量
kmeans = KMeans(n_clusters=4)

# 训练模型
kmeans.fit(X)

# 预测聚类结果
y_kmeans = kmeans.predict(X)

# 可视化聚类结果
plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=50, cmap='viridis')
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.5)
plt.title('KMeans Clustering')
plt.show()

聚类(Clustering)是一种无监督学习方法,它将相似的对象归为同一簇,不相似的对象归为不同簇。聚类是一种常用的数据挖掘技术,被广泛应用于图像分割、文本挖掘、市场营销、生物信息学等领域。 层次聚类(Hierarchical Clustering)是一种聚类方法,它将数据样本逐层进行聚类。根据聚类过程的分裂和合并方式,可以将层次聚类分为两类:凝聚聚类和分裂聚类。 对于凝聚聚类,初始时将每个数据样本看作一个簇,然后将相似度最高的两个簇合并成一个大簇,直到所有样本都被合并成一个簇为止。这种聚类方法的优点是简单易懂,缺点是计算复杂度高,不适用于大规模数据。 对于分裂聚类,初始时将所有数据样本看作一个簇,然后将簇逐层分裂成小簇,直到所有样本都成为单个簇为止。这种聚类方法的优点是计算复杂度低,适用于大规模数据,缺点是聚类结果不稳定,容易受到初始簇的影响。 层次聚类的步骤如下: 1. 计算两两数据样本之间的距离(或相似度); 2. 将每个数据样本看作一个初始簇; 3. 重复执行以下步骤,直到所有样本都在同一个簇中或达到预设的聚类数目: a. 选择距离最近的两个簇合并成一个新簇; b. 更新新簇与其它簇之间的距离(或相似度); 层次聚类的结果可以用树状图(Dendrogram)表示,树状图的叶子节点是数据样本,中间节点是簇,根节点是所有数据样本构成的簇。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值