HANAU数学专题

A - A^B Mod C

题目描述:

给出3个正整数A B C,求A^B Mod C。
例如,3 5 8,3^5 Mod 8 = 3。

输入格式

3个正整数A B C,中间用空格分隔。(1 <= A,B,C <= 10^9)

输出格式

输出计算结果

Sample Input

3 5 8

Sample Output

3

思路

数据范围太大了,次方之后绝对会炸数据范围
所以使用快速幂
可参考快速幂

以p=2,n=8为例
常规是通过连乘法求幂,即2^8=2 * 2 * 2 * 2 * 2 * 2 * 2 * 2
这样做的要做8次乘法
而反复平方法则不同,
定义幂sq=1,再检查n是否大于0,
While,循环过程若发现n为奇数,则把此时的p值乘到sq
{
n=8>0 ,把p自乘一次, p=pp=4 ,n取半 n=4
n=4>0 ,再把p自乘一次, p=p
p=16 ,n取半 n=2
n=2>0 ,再把p自乘一次, p=pp=256 ,n取半 n=1,sq=sqp
n=1>0 ,再把p自乘一次, p=p*p=256^2 ,n取半 n=0,弹出循环
}

则sq=256就是所求,显然反复平方法只做了3次乘法
核心代码

ull ksm(ull a, ull b, ull mod) {
	ull ans = 1, base = a;
	while(b != 0) {
		if (b & 1 != 0) {
			ans = (ans * base) % mod;
		}
		base = (base * base) % mod;
		
		b >>= 1;
	}
	return ans;
}

b >>= 1 是把 b 的二进制形式向右移1位,等价于除以二,但是比 b /= 2; 要快速一点

代码实现
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<stdlib.h>
typedef unsigned long long ull;
typedef long long ll;

ull ksm(ull a, ull b, ull mod) {
	ull ans = 1, base = a;
	while(b != 0) {
		if (b & 1 != 0) {
			ans = (ans * base) % mod;
		}
		base = (base * base) % mod;
		
		b >>= 1;
	}
	return ans;
}
int main() {
	ull a, b, c;
	scanf("%llu%llu%llu", &a, &b, &c);
	printf("%llu", ksm(a, b, c));
	return 0;
}

B - 逆元

题目描述:

阿克克希是求婚总动员的队长,他通过自己的双手,成就了无数年轻人的梦,但他却留下了悲伤的泪水。

求婚是非常费力的,他手上有 P−1 个求婚请求,这 i个人的编号为 [1,P−1]
面对第 i个人他的求婚麻烦值为:i在模 PPP 意义下的逆元。
他现在想知道总的麻烦值。

tips: 如果有任意一个编号 i 在模 i 意义下不存在逆元,请输出 AKCniubi

输入格式

一行一个数 PPP 表示求婚请求总数

输出格式

一行一个数表示总麻烦值

若有数存在无逆元的情况,输出 AKCniubi

数据范围

对于 30% 的数据,P<=1000000
对于 50% 的数据,P<=10000000
对于 100%的数据,P<=2^31

Sample Input

3

Sample Output

3

思路

由逆元性质可以知道,当 i 和 p 互质时,才有逆元,
若 p 是质数, 而 i 小于p,不可能是p的倍数,所以互质
并且,前几个质数的逆元和是 1 加到 p - 1 的和,用等差数列求

代码实现
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<stdlib.h>
#define MS(a, b) memset(a, b, sizeof(a))
typedef unsigned long long ull;
typedef long long ll;
int prime(ll t) {
	ll a = sqrt(t);
	for (int i = 2; i <= a; i++) {
		if (t % i == 0)return 0;
	}
	return 1;
}
int main() {
	ll p, sum = 0; 
	scanf("%lld", & p);
	if (!prime(p)) printf("AKCniubi");
	else {
		printf("%lld", (p-2 + 1)*p/2);
	}
	return 0;
}

C - 判决素数个数

题目描述:

输入两个整数X和Y,输出两者->>之间<<-的素数个数(包括X和Y)。

输入格式

两个整数X和Y(1 <= X,Y <= 10^5)。

输出格式

输出一个整数,表示X,Y之间的素数个数(包括X和Y)。

Sample Input

1 100

Sample Output

25

思路

很简单的题,数据范围也很小,可以直接判断是否是素数,暴力循环遍历计数,但是有一个大坑,并没有说x,y谁更大,会很容易下意识地认为x<y,这样就错误了

代码实现
#include<stdio.h>
#include<string.h>
#include<math.h>
int prime(int t) {
	if (t == 1 || t == 0) return 0;
	else if (t == 2) return 1;
	else if (t % 2 == 0) return 0;
	else {
		int a = sqrt(t);
		for (int i = 2; i <= a; i++)
			if (t % i == 0) return 0;
	}
		
	return 1;
}
int main() {
	int x, y;
	scanf("%d %d", &x, &y);
	int cnt = 0;
	int t;
	//超级大坑,并没有说 X , Y 谁更大 
	if (y < x) t = x, x = y, y = t;
	for (int i = x; i <= y; i++) {
		cnt += prime(i);
	}
	printf("%d\n", cnt);
	
	return 0;
}

D - 矩阵乘法

题目描述:

计算两个矩阵的乘法。n×m 阶的矩阵 A 乘以 m×k 阶的矩阵 B 得到的矩阵 C 是 n×k阶的,
且 C[i][j] = A[i][0]×B[0][j]+A[i][1]×B[1][j]+……+A[i][m−1]×B[m−1][j]

C[i][j] 表示 C矩阵中第 i 行第 j 列元素)。

输入格式

第一行为 n,m,k表示 A矩阵是 n 行 m 列,B 矩阵是 m行 k列,n,m,k均小于 100;

然后先后输入 A 和 B 两个矩阵,A 矩阵 n 行 m 列,B 矩阵 m 行 k 列,矩阵中每个元素的绝对值不会大于 1000。

输出格式

输出矩阵C,一共 n行,每行 k 个整数,整数之间以一个空格分开。

Sample Input

3 2 3
1 1
1 1
1 1
1 1 1
1 1 1

Sample Output

2 2 2
2 2 2
2 2 2

思路
代码实现
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<stdlib.h>
typedef unsigned long long ull;
typedef long long ll;
int main() {
	int a[101][101], b[101][101],c[101][101], n, m, k, sum = 0;
	scanf("%d%d%d", &n, &m, &k);
	for (int i = 0; i < n; i++) 
		for (int j = 0; j < m; j++) 
			scanf("%d", &a[i][j]);
	
	for (int i = 0; i < m; i++) 
		for (int j = 0; j < k; j++) 
			scanf("%d", &b[i][j]);
	
	for (int i = 0; i < n; i++) {
		for (int j = 0; j < k; j++) {
			for (int p = 0; p < m; p++)
				sum += a[i][p] * b[p][j];
			
			c[i][j] = sum;
			sum = 0;
		}
	}
	
	for (int i = 0; i < n; i++){
		for (int j = 0; j < k; j++) {
			if (j == 0) printf("%d", c[i][j]);
			else printf(" %d", c[i][j]);
		}
		printf("\n");
	}
	return 0;
}

E - Bash游戏

题目描述:

有一堆石子共有N个。A B两个人轮流拿,A先拿。每次最少拿1颗,最多拿K颗,拿到最后1颗石子的人获胜。假设A B都非常聪明,拿石子的过程中不会出现失误。给出N和K,问最后谁能赢得比赛。
例如N = 3,K = 2。无论A如何拿,B都可以拿到最后1颗石子。

输入格式

第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 10000) 第2 - T + 1行:每行2个数N,K。中间用空格分隔。(1 <= N,K <= 10^9)

输出格式

共T行,如果A获胜输出A,如果B获胜输出B。

Sample Input

4
3 2
4 2
7 3
8 3

Sample Output

B
A
A
B

思路

经典博弈论的取石子(NIM)游戏
巴氏博弈
详见博弈论之取石子游戏的学习

奇异局势是 n%(m+1) == 0
谁面对这个局势谁输,直接判断即可,若满足,先手输

代码实现
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<stdlib.h>
typedef unsigned long long ull;
typedef long long ll;
int main() {
	int n, k, t;
	scanf("%d", &t);
	while(t--) {
		scanf("%d%d", &n, &k) ;
		if (k >= n) printf("A\n");
		else if (n % (k+1) == 0) printf("B\n");
		else printf("A\n");
	}

	return 0;
}

F - 取石子游戏

题目描述:

有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。

输入格式

输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。

输出格式

输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。

Sample Input

2 1
8 4
4 7

Sample Output

0
1
0

思路

威佐夫博弈
详见博弈论之取石子游戏的学习
假设,a < b
p = (1 + sqrt(5.0)) / 2; p = 1.618
也就是黄金分割数加一
奇异局势是 (int)( (b-a) * p) == a
直接判断即可,满足上式,则先手输

代码实现
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<stdlib.h>
typedef unsigned long long ull;
typedef long long ll;
int main() {
	int a, b, t, temp;
	double p;
	while(scanf("%d%d", &a, &b) != EOF) {
		if (b < a) t = a, a = b, b = t;
		p = (1 + sqrt(5.0) )/ 2;
		t = b - a;
		temp = (int)(t * p);
		if (a == temp) printf("0\n");
		else printf("1\n");
	}
	return 0;
}

G - Matches Game

题目描述:

这是一个简单的游戏。在这个游戏中,有几堆火柴和两名玩家。这两个玩家轮流进行。在每一轮中,玩家可以选择一堆并从堆中取出任意数量的火柴(当然,取出的火柴数量不能为零,也不能大于所选堆中的火柴数量)。如果一名玩家取完火柴后,没有剩下火柴,该玩家就是赢家。假设这两个玩家都会作出最优决策。你的工作是判断先手玩家能否赢得比赛。

输入格式

输入由几行组成,每行中都有一个测试用例。 在一行的开头,有一个整数M(1<=M<=20),它是火柴堆的数量。然后是M个不大于10000000的正整数。这些M个整数表示每堆中的火柴数。

输出格式

对于每个测试用例,如果第一个玩家获胜,在一行中输出“Yes”,否则输出“No”。

Sample Input

2 45 45
3 3 6 9

Sample Output

No
Yes

思路

尼姆博弈
详见博弈论之取石子游戏的学习

奇异局势就是 所有堆的火柴数的异或和 = 0

代码实现
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<stdlib.h>
typedef unsigned long long ull;
typedef long long ll;
int main() {
	int m;
	while (scanf("%d", &m) != EOF) {
		ll a, t = 0;
		while(m--) {
			scanf("%lld", &a);
			t ^= a;
		}
		// 看错最终结果了,No o是小写 
		if (!t) printf("No\n");
		else printf("Yes\n");
	}
	
	return 0;
}

H - 互质数的个数(一)

题目描述:

这里我们定义 φ(n) 表示所有小于等于 nnn 与 nnn 互质数的个数。

例如 φ(10)=4,因为我们可以在 1∼10 中找到 1,3,7,9 与 10互质。

输入格式

第一行输入一个整数 t,表示测试数据组数。

接下来 t行,每行有一个整数 n。

输出格式

对于每组测试数据输出 φ(n)

数据范围

1≤t≤100,1≤n≤10^10。

Sample Input

3
2
10
100

Sample Output

1
4
40

思路

数据范围很大,直接暴力先循环1~n,再判断是否互质,会炸数据范围
因此,采用更方便的 欧拉函数

欧拉函数是小于x的整数中与x互质的数的个数,一般用φ(x)表示。特殊的,φ(1)=1。

埃拉托斯特尼筛求欧拉函数
ull eular(ull n)
{
    ull ans = n;
    for(int i=2; i*i <= n; ++i)
    {
        if(n%i == 0)
        {
            ans = ans/i*(i-1);
            while(n%i == 0)
                n/=i;
        }
    }
    if(n > 1) ans = ans/n*(n-1);
    return ans;
}

详见浅谈欧拉函数
欧拉函数和求解和两种筛法打表详讲

代码实现
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<stdlib.h>
typedef unsigned long long ull;
typedef long long ll;
ull eular(ull n)
{
    ull ans = n;
    for(int i=2; i*i <= n; ++i)
    {
        if(n%i == 0)
        {
            ans = ans/i*(i-1);
            while(n%i == 0)
                n/=i;
        }
    }
    if(n > 1) ans = ans/n*(n-1);
    return ans;
}

int main() {
	int t;
	ull a;
	scanf("%d", &t) ;
	while (t--) {
		memset(b, 0, sizeof(b));
		memset(c, 0, sizeof(c));
		scanf("%llu", &a);
		printf("%llu\n",eular(a));
	}

	return 0;
}

I - Sumdiv

题目描述

有两个自然数a和b(a,b≤50000000)

求a的b次方的所有约数之和模9901

输入格式

一行,包含由空格分隔的两个自然数a和b

输出格式

一行,a的b次方的约数和模9901

Sample Input

2 3

Sample Output

15

样例解释

8的约数是1,2,4,8, 它们的总和是15
\15模9901是15

思路

约数和公式 + 快速幂
详见数论

代码
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<stdlib.h>
#define MS(a, b) memset(a, b, sizeof(a))
typedef unsigned long long ull;
typedef long long ll;
#define MAX 1000000
#define MOD 9901 
ll f[MAX], t[MAX];
ll qp(ll a, ll b) {//快速幂 
	ll base = a;
	ll ans = 1;
	while(b) {
		if (b & 1) {
			ans =(ans * base) % MOD;
		}
		base =(base * base) % MOD;
		b >>= 1;
	}
	return ans;
}

ll sum(ll a, ll b) {//约数和公式 
	if (b == 0) return 1;
	if (b % 2 ) return sum(a, b/2) * (1 + qp(a, b/2 + 1)) % MOD;
	else return ((sum(a, b/2 - 1) * (1 + qp(a, b/2 + 1)))%MOD + qp(a, b/2)) ;
}
int main() {
	ll a, b; 
	ll ans = 1;
	scanf("%lld%lld", &a, &b);
	ll k = 0;
	for (int i = 2; i*i <= a; ) {
		int flag = 0;
		while (a % i == 0) {
			flag = 1;
			f[k] = i;
			t[k]++;
			a /= i;
		}
		if (flag) k++;
		if (i == 2)i++;
		else i += 2;
	}
	
	if (a != 1) {
		f[k] = a;
		t[k++]++;//为了下面的循环,变量可以正常使用 
	}
	for (int i = 0; i < k; i++) {
		ans =( ans % MOD * sum(f[i], t[i]*b) % MOD) % MOD;
	}
	printf("%lld", ans);
	return 0;
}

J - The Lottery

题目描述

给出n , m,和m个数a[1]⋯a[m]。
求1⋯n中不被a[1]⋯a[m]中任意一个整除的数的个数。
10⩽n<2^31 ,1⩽m⩽15

输入格式

每组数据以n,m为第一行。
第二行m个数,表示a[i]。
输入文件以EOF结尾。

输出格式

每组数据一行一个数字表示答案。

Sample Input

10 2
2 3
20 2
2 4

Sample Output

3
10

思路

二进制枚举+gcd+lcm+容斥
容斥,奇加偶减
详见容斥1
容斥简介
容斥模板
二进制枚举

代码
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<stdlib.h>
#define MS(a, b) memset(a, b, sizeof(a))
typedef unsigned long long ull;
typedef long long ll;
ll a[16];

ll gcd(ll a, ll b) {
//	if(b == 0)return a;
	return b==0?a:gcd(b, a%b);
}

ll lcm(ll a, ll b) {
	return a / gcd(a, b) * b;
}

int main() {
	ll n, m;
	while(~scanf("%lld%lld", &n, &m)) {
		MS(a, 0);
		for(int i = 0; i < m; i++)
			scanf("%lld", &a[i]);
		
		ll ans = 0, sum = 0;
		for (int i = 1; i < (1 << m); i++) {
			ll cnt = 0, ans = 1;
			for (int j = 0; j < m; j++) {
				if (i & (1 << j))  {
					ans = lcm(ans, a[j]);
					if (ans > n) break;
					
					cnt ++;
				}
			}
			if (cnt & 1)
				sum += n/ans;
			else sum -= n/ans;
		}
		
		printf("%lld\n", n - sum);
	}
}

K - 组合数问题

题目描述

在这里插入图片描述

输入格式

第一行有两个整数 t,k,其中 ttt 代表该测试点总共有多少组测试数据,k 的意义见题目描述。

接下来 t 行,每行两个整数 n,m,其中 n,m 的意义见题目描述。

输出格式

t 行,每行一个整数代表所有的 0≤i≤n,0≤j≤min(i,m)中有多少对 (i,j)满足 ​C(i,j) 是 k 的倍数。

数据范围

在这里插入图片描述

Sample Input

1 2
3 3

Sample Output

1

Sample Input

2 5
4 5
6 7

Sample Output

0
7

思路

排列组合有公式
C(i,j) = C(i-1 , j) + C(i-1 , j-1)
所以直接二维数组杨辉三角
直接加和就好
然后发现TLE了,再利用前缀和,接着预处理缩短时间

代码
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<stdlib.h>
#define MS(a, b) memset(a, b, sizeof(a))
typedef unsigned long long ull;
typedef long long ll;
// 数据较少,可以直接提前使用 数组,来预处理一下 
// 其实组合数就是杨辉三角,直接推出来杨辉三角的值,直接使用即可
// C(i,j) = C(i-1, j) + C(i-1, j-1) ;

// 之后发现,从i = 0; i < n ; i++
// j = 0 ; j <= i ; j++
//开始循环,还是会TLE ,所以,进一步处理,直接算前缀和,载加上每一列最后的前缀和; 
int a[2010][2010], n, m, k, t, vis[2010][2010];
ll min(ll a, ll b) {
	if (a < b)return a;
	return b;
}
void yhsj(int c[][2010]) {
	for (int i = 0; i < 2000; i++) {
		c[i][0] = 1;
		c[i][i] = 1;
	}
	for (int i = 1; i < 2000; i++) {
		for (int j = 1; j <= i; j++) {
			c[i][j] = (c[i-1][j]+ c[i-1][j-1]) % k;
			if (c[i][j] == 0) vis[i][j] = 1;
		}
	}
	
	for (int i = 0; i < 2000; i++) {
//		vis[i][0] += vis[i-1][i-1] ;
		for (int j = 0; j <= i; j++) {
		// 把每一列的,加成前缀和 
			vis[i][j] += vis[i][j-1];
		}
	}
}
int main () {
	scanf("%d%d", &t, &k);
	yhsj(a);
	while(t--) {
		int ans = 0;
		scanf("%d%d", &n, &m);
			for (int i = 0; i <= n; i++) {
				//行数是确定的,直接从 1 - > n ,但是列的坐标要取 i 和 m 中小的那一个,
				//所以按列来加和前缀和 ,直接加和 列指向的那个坐标中的前缀和即可 
				ans += vis[i][min(i, m)];
			}
		printf("%d\n", ans);
	}
}

L - 同余方程

题目描述

求关于 x 的同余方程 ax≡1( mod b) 的最小正整数解。

输入格式

输入只有一行,包含两个正整数 a,b,用一个空格隔开。

输出格式

输出只有一行,包含一个正整数 x0,即最小正整数解。输入数据保证一定有解。

数据范围

对于 40% 的数据,2≤b≤1,000;

对于 60% 的数据,2≤b≤50,000,000;

对于 100% 的数据,2≤a,b≤2,000,000,000。

Sample Input

3 10

Sample Output

7

思路

扩展欧几里得算法

详见扩展欧几里得算法(详细推导+代码实现+应用)
扩展欧几里得算法详解
扩展欧几里得算法详解2

代码
#include<stdio.h>
#include<string.h>
#include<math.h>
#include<stdlib.h>
#define MS(a, b) memset(a, b, sizeof(a))
typedef unsigned long long ull;
typedef long long ll;
ll gcdEx(ll a, ll b, ll & x, ll & y)
{
    if(b==0)
    {
        x=1,y=0 ;
        return a ;
    }
    else
    {
        ll r=gcdEx(b,a%b,x,y);
        /* r = GCD(a, b) = GCD(b, a%b) */
        ll t=x ;
        x=y ;
        y=t-a/b*y ;
        return r ;
    }
}
ll inv(ll a,ll m)
{
    ll x,y;
   if(gcdEx(a,m,x,y)!=1)
        return -1;//不互质 不存在逆元
    return (x%m+m)%m;
}

int main() {
	ll a, b;
	ll x ;
	scanf("%d%d", &a, &b);
	x = inv(a, b);
	if(x != -1)
	printf("%lld", x);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值