前置知识:
- 【定义】分块矩阵
- 分块矩阵的运算规则
m
×
n
m \times n
m×n 矩阵
A
\boldsymbol{A}
A 有
n
n
n 列,称为矩阵
A
\boldsymbol{A}
A 的
n
n
n 个列向量。若第
j
j
j 列记作
a
j
=
(
a
1
j
a
2
j
⋮
a
m
j
)
\boldsymbol{a}_j = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix}
aj=
a1ja2j⋮amj
则
A
\boldsymbol{A}
A 可按列分块为
A
=
(
a
1
,
a
2
,
⋯
,
a
n
)
\boldsymbol{A} = (\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_n)
A=(a1,a2,⋯,an)
m
×
n
m \times n
m×n 矩阵
A
\boldsymbol{A}
A 有
m
m
m 行,称为矩阵
A
\boldsymbol{A}
A 的
m
m
m 个行向量。若第
i
i
i 行记作
α
i
T
=
(
a
i
1
,
a
i
2
,
⋯
,
a
i
n
)
\boldsymbol{\alpha}_i^T = (a_{i1},a_{i2},\cdots,a_{in})
αiT=(ai1,ai2,⋯,ain)
则
A
\boldsymbol{A}
A 可按行分块为
A
=
(
α
1
T
α
2
T
⋮
α
m
T
)
\boldsymbol{A} = \begin{pmatrix} \boldsymbol{\alpha}_1^T \\ \boldsymbol{\alpha}_2^T \\ \vdots \\ \boldsymbol{\alpha}_m^T \\ \end{pmatrix}
A=
α1Tα2T⋮αmT
(1)通过矩阵的按行分块和按列分块,可以直观地表示,在矩阵乘法 A B = C = ( c i j ) m × n \boldsymbol{A} \boldsymbol{B} = \boldsymbol{C} = (c_{ij})_{m \times n} AB=C=(cij)m×n 中, c i j c_{ij} cij 为 A \boldsymbol{A} A 中的一个行向量与 B \boldsymbol{B} B 中的一个列向量的乘积。
对于矩阵
A
=
(
a
i
j
)
m
×
s
\boldsymbol{A} = (a_{ij})_{m \times s}
A=(aij)m×s 与矩阵
B
=
(
b
i
j
)
s
×
n
\boldsymbol{B} = (b_{ij})_{s \times n}
B=(bij)s×n 的乘积矩阵
A
B
=
C
=
(
c
i
j
)
m
×
n
\boldsymbol{A} \boldsymbol{B} = \boldsymbol{C} = (c_{ij})_{m \times n}
AB=C=(cij)m×n,若把
A
\boldsymbol{A}
A 按行分成
m
m
m 块,将
B
\boldsymbol{B}
B 按列分成
n
n
n 块,便有
A
B
=
(
α
1
T
α
2
T
⋮
α
m
T
)
(
b
1
,
b
2
,
⋯
,
b
n
)
=
(
α
1
T
b
1
α
1
T
b
2
⋯
α
1
T
b
n
α
2
T
b
1
α
2
T
b
2
⋯
α
2
T
b
n
⋮
⋮
⋮
α
m
T
b
1
α
m
T
b
2
⋯
α
m
T
b
n
)
=
(
c
i
j
)
m
×
n
\boldsymbol{A} \boldsymbol{B} = \begin{pmatrix} \boldsymbol{\alpha}_1^T \\ \boldsymbol{\alpha}_2^T \\ \vdots \\ \boldsymbol{\alpha}_m^T \end{pmatrix} (\boldsymbol{b}_1, \boldsymbol{b}_2, \cdots, \boldsymbol{b}_n) = \begin{pmatrix} \boldsymbol{\alpha}_1^T \boldsymbol{b}_1 & \boldsymbol{\alpha}_1^T \boldsymbol{b}_2 & \cdots & \boldsymbol{\alpha}_1^T \boldsymbol{b}_n \\ \boldsymbol{\alpha}_2^T \boldsymbol{b}_1 & \boldsymbol{\alpha}_2^T \boldsymbol{b}_2 & \cdots & \boldsymbol{\alpha}_2^T \boldsymbol{b}_n \\ \vdots & \vdots & & \vdots \\ \boldsymbol{\alpha}_m^T \boldsymbol{b}_1 & \boldsymbol{\alpha}_m^T \boldsymbol{b}_2 & \cdots & \boldsymbol{\alpha}_m^T \boldsymbol{b}_n \\ \end{pmatrix} = (c_{ij})_{m \times n}
AB=
α1Tα2T⋮αmT
(b1,b2,⋯,bn)=
α1Tb1α2Tb1⋮αmTb1α1Tb2α2Tb2⋮αmTb2⋯⋯⋯α1Tbnα2Tbn⋮αmTbn
=(cij)m×n
其中
c
i
j
=
α
i
T
b
j
=
(
a
i
1
,
a
i
2
,
⋯
,
a
i
s
)
(
b
1
j
b
2
j
⋮
b
s
j
)
=
∑
k
=
1
s
a
i
k
b
k
j
c_{ij} = \boldsymbol{\alpha}_i^T \boldsymbol{b}_j = (a_{i1},a_{i2},\cdots,a_{is}) \begin{pmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{sj} \end{pmatrix} = \sum_{k=1}^s a_{ik} b_{kj}
cij=αiTbj=(ai1,ai2,⋯,ais)
b1jb2j⋮bsj
=k=1∑saikbkj
(2)通过将矩阵乘法中的矩阵按行分块和按列分块,可以得到线性方程组的另一个表达式。
已知线性方程组
{
a
11
x
1
+
a
12
x
2
+
⋯
a
1
n
x
n
=
b
1
a
21
x
1
+
a
22
x
2
+
⋯
a
2
n
x
n
=
b
2
⋯
a
m
1
x
1
+
a
m
2
x
2
+
⋯
a
m
n
x
n
=
b
m
(1)
\begin{cases} a_{11} x_1 + a_{12} x_2 + \cdots a_{1n} x_n = b_1 \\ a_{21} x_1 + a_{22} x_2 + \cdots a_{2n} x_n = b_2 \\ \cdots \\ a_{m1} x_1 + a_{m2} x_2 + \cdots a_{mn} x_n = b_m \end{cases} \tag{1}
⎩
⎨
⎧a11x1+a12x2+⋯a1nxn=b1a21x1+a22x2+⋯a2nxn=b2⋯am1x1+am2x2+⋯amnxn=bm(1)
它的矩阵乘积形式为
A
m
×
n
x
n
×
1
=
b
m
×
1
\boldsymbol{A}_{m \times n} \boldsymbol{x}_{n \times 1} = \boldsymbol{b}_{m \times 1}
Am×nxn×1=bm×1
将上式中
A
\boldsymbol{A}
A 按列分块,
x
\boldsymbol{x}
x 按行分块,由分块矩阵的乘法有
(
a
1
,
a
2
,
⋯
,
a
n
)
(
x
1
x
2
⋮
x
n
)
=
b
(\boldsymbol{a}_1,\boldsymbol{a}_2,\cdots,\boldsymbol{a}_n) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \boldsymbol{b}
(a1,a2,⋯,an)
x1x2⋮xn
=b
即
x
1
a
1
+
x
2
a
2
+
⋯
x
n
a
n
=
b
x_1 \boldsymbol{a}_1 + x_2 \boldsymbol{a}_2 + \cdots x_n \boldsymbol{a}_n = \boldsymbol{b}
x1a1+x2a2+⋯xnan=b
这等价于将方程组表示为
(
a
11
a
21
⋮
a
m
1
)
x
1
+
(
a
12
a
22
⋮
a
m
2
)
x
2
+
⋯
+
(
a
1
n
a
2
n
⋮
a
m
n
)
x
n
=
(
b
1
b
2
⋮
b
m
)
\begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix} x_1 + \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix} x_2 + \cdots + \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix} x_n = \begin{pmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{pmatrix}
a11a21⋮am1
x1+
a12a22⋮am2
x2+⋯+
a1na2n⋮amn
xn=
b1b2⋮bm