本篇笔记首先介绍了分块矩阵的概念,并介绍了按行或按列进行分块的两种常见分块方式,还讨论了矩阵标准形的主要基本特征,然后重点讨论了分块矩阵的几种运算,包括分块矩阵的和、差、数乘和乘积,以及对角型分块矩阵、三角分块矩阵和下三角分块矩阵的和、差、数乘和乘积,最后还介绍了分块矩阵转置和求逆的运算。
1 基本概念
在计算或证明时为了方便,将矩阵进行分块。
定义:将一个矩阵用若干条横线和竖线分成许多个小矩阵,将每个小矩阵称为这个矩阵的子块,以子块为元素的形式上的矩阵称为分块矩阵。——百度百科
[ 1 1 3 4 ∣ 0 − − − − − − 2 0 1 1 ∣ 0 1 1 1 1 ∣ 3 4 1 1 1 ∣ 0 ] = [ A 1 A 2 A 3 A 4 ] \begin{bmatrix}1&1&3&4&|&0\\-&-&-&-&-&-\\2&0&1&1&|&0\\1&1&1&1&|&3\\4&1&1&1&|&0\end{bmatrix}=\begin{bmatrix}A_1&A_2\\A_3&A_4\end{bmatrix} ⎣⎢⎢⎢⎢⎡1−2141−0113−1114−111∣−∣∣∣0−030⎦⎥⎥⎥⎥⎤=[A1A3A2A4]
根据实际做题的方便性和需要灵活分块。
以下是错误分法:
[ 1 ∣ 1 3 ∣ 4 0 ∣ − − − 2 ∣ 0 1 1 0 − − − − − 1 1 ∣ 1 1 ∣ 3 − − − − − 4 ∣ 1 1 ∣ 1 0 ] \begin{bmatrix}1&|&1&3&|&4&0\\&|&&&-&-&-\\2&|&0&1&&1&0\\&-&-&-&-&-&\\1&1&|&1&1&|&3\\&-&-&&-&-&-\\4&|&1&1&|&1&0\end{bmatrix} ⎣⎢⎢⎢⎢⎢⎢⎢⎢⎡1214∣∣∣−1−∣10−∣−131−11∣−−1−∣4−1−∣−10−03−0⎦⎥⎥⎥⎥⎥⎥⎥⎥⎤
要求:不管横线还是竖线,需要一气到头。
如果分块数量比较多,也可以使用以下方式表示:
[ A 11 A 12 A 21 A 22 ] \begin{bmatrix}A_{11}&A_{12}\\A_{21}&A_{22}\end{bmatrix} [A11A21A12A22]
2 两种常见的分块
2.1 按行分块
将每行进行分块。
[ 1 2 3 − − − 1 1 1 − − − 1 4 4 ] = [ A 1 A 2 A 3 ] \begin{bmatrix}1&2&3\\-&-&-\\1&1&1\\-&-&-\\1&4&4\end{bmatrix}=\begin{bmatrix}A_1\\A_2\\A_3\end{bmatrix} ⎣⎢⎢⎢⎢⎡1−1−12−1−43−1−4⎦⎥⎥⎥⎥⎤=⎣⎡A1A2A3⎦⎤
每一行构成一个列向量,向量将在后续章节介绍。
( α 1 α 2 α 3 ) \begin{pmatrix}{\alpha}_1\\{\alpha}_2\\{\alpha}_3\end{pmatrix} ⎝⎛α1α2α3⎠⎞
2.2 按列分块
将第列进行分块。
[ 1 ∣ 2 ∣ 3 1 ∣ 1 ∣ 1 1 ∣ 4 ∣ 4 ] = [ B 1 B 2 B 3 ] \begin{bmatrix}1&|&2&|&3\\1&|&1&|&1\\1&|&4&|&4\end{bmatrix}=\begin{bmatrix}B_1&B_2&B_3\end{bmatrix} ⎣⎡111∣∣∣214∣∣∣314⎦⎤=[B1B2B3]
每一列构成一个行向量,向量将在后续章节介绍。
( β 1 β 2 β 3 ) \begin{pmatrix}{\beta}_1&{\beta}_2&{\beta}_3\end{pmatrix} (β1β2β3)
3 标准形
D = [ 1 ⋱ 1 0 ⋱ 0 ] m × n D=\begin{bmatrix}1&&&&&\\&\ddots&&&&\\&&1&&&\\&&&0&&\\&&&&\ddots&\\&&&&&0\end{bmatrix}_{m{\times}n} D=⎣⎢⎢⎢⎢⎢⎢⎡1⋱10⋱0⎦⎥⎥⎥⎥⎥⎥⎤m×n
最主要特征:从左上角开始一串连续的 1 1 1,其余地方均为 0 0 0。标准形不一定是方的。
判断以下矩不是准形:
[ 1 1 0 ] 是 [ 1 0 0 0 0 1 0 0 0 0 1 0 ] 是 [ 1 1 1 1 ] \begin{bmatrix}1&&\\&1&\\&&0\end{bmatrix}是\qquad\begin{bmatrix}1&0&0&0\\0&1&0&0\\0&0&1&0\end{bmatrix}是\qquad\begin{bmatrix}1&&&\\&1&&\\&&1&\\&&&1\end{bmatrix} ⎣⎡110⎦⎤是