线性代数学习笔记(十四)——分块矩阵

本篇笔记首先介绍了分块矩阵的概念,并介绍了按行或按列进行分块的两种常见分块方式,还讨论了矩阵标准形的主要基本特征,然后重点讨论了分块矩阵的几种运算,包括分块矩阵的和、差、数乘和乘积,以及对角型分块矩阵、三角分块矩阵和下三角分块矩阵的和、差、数乘和乘积,最后还介绍了分块矩阵转置和求逆的运算。

1 基本概念

在计算或证明时为了方便,将矩阵进行分块。

定义:将一个矩阵用若干条横线和竖线分成许多个小矩阵,将每个小矩阵称为这个矩阵的子块,以子块为元素的形式上的矩阵称为分块矩阵。——百度百科

[ 1 1 3 4 ∣ 0 − − − − − − 2 0 1 1 ∣ 0 1 1 1 1 ∣ 3 4 1 1 1 ∣ 0 ] = [ A 1 A 2 A 3 A 4 ] \begin{bmatrix}1&1&3&4&|&0\\-&-&-&-&-&-\\2&0&1&1&|&0\\1&1&1&1&|&3\\4&1&1&1&|&0\end{bmatrix}=\begin{bmatrix}A_1&A_2\\A_3&A_4\end{bmatrix} 12141011311141110030=[A1A3A2A4]

根据实际做题的方便性和需要灵活分块。

以下是错误分法:
[ 1 ∣ 1 3 ∣ 4 0 ∣ − − − 2 ∣ 0 1 1 0 − − − − − 1 1 ∣ 1 1 ∣ 3 − − − − − 4 ∣ 1 1 ∣ 1 0 ] \begin{bmatrix}1&|&1&3&|&4&0\\&|&&&-&-&-\\2&|&0&1&&1&0\\&-&-&-&-&-&\\1&1&|&1&1&|&3\\&-&-&&-&-&-\\4&|&1&1&|&1&0\end{bmatrix} 12141101311114110030

要求:不管横线还是竖线,需要一气到头。

如果分块数量比较多,也可以使用以下方式表示:
[ A 11 A 12 A 21 A 22 ] \begin{bmatrix}A_{11}&A_{12}\\A_{21}&A_{22}\end{bmatrix} [A11A21A12A22]

2 两种常见的分块

2.1 按行分块

将每行进行分块。

[ 1 2 3 − − − 1 1 1 − − − 1 4 4 ] = [ A 1 A 2 A 3 ] \begin{bmatrix}1&2&3\\-&-&-\\1&1&1\\-&-&-\\1&4&4\end{bmatrix}=\begin{bmatrix}A_1\\A_2\\A_3\end{bmatrix} 111214314=A1A2A3

每一行构成一个列向量,向量将在后续章节介绍。
( α 1 α 2 α 3 ) \begin{pmatrix}{\alpha}_1\\{\alpha}_2\\{\alpha}_3\end{pmatrix} α1α2α3

2.2 按列分块

将第列进行分块。

[ 1 ∣ 2 ∣ 3 1 ∣ 1 ∣ 1 1 ∣ 4 ∣ 4 ] = [ B 1 B 2 B 3 ] \begin{bmatrix}1&|&2&|&3\\1&|&1&|&1\\1&|&4&|&4\end{bmatrix}=\begin{bmatrix}B_1&B_2&B_3\end{bmatrix} 111214314=[B1B2B3]

每一列构成一个行向量,向量将在后续章节介绍。
( β 1 β 2 β 3 ) \begin{pmatrix}{\beta}_1&{\beta}_2&{\beta}_3\end{pmatrix} (β1β2β3)

3 标准形

D = [ 1 ⋱ 1 0 ⋱ 0 ] m × n D=\begin{bmatrix}1&&&&&\\&\ddots&&&&\\&&1&&&\\&&&0&&\\&&&&\ddots&\\&&&&&0\end{bmatrix}_{m{\times}n} D=1100m×n

最主要特征:从左上角开始一串连续的 1 1 1,其余地方均为 0 0 0标准形不一定是方的

判断以下矩不是准形:
[ 1 1 0 ] 是 [ 1 0 0 0 0 1 0 0 0 0 1 0 ] 是 [ 1 1 1 1 ] \begin{bmatrix}1&&\\&1&\\&&0\end{bmatrix}是\qquad\begin{bmatrix}1&0&0&0\\0&1&0&0\\0&0&1&0\end{bmatrix}是\qquad\begin{bmatrix}1&&&\\&1&&\\&&1&\\&&&1\end{bmatrix} 110

<think>好的,我现在需要帮助用户了解分块矩阵乘法的实现与原理。首先,我得回顾一下分块矩阵乘法的基本概念。根据用户提供的引用[1],块矩阵乘法是将大矩阵分成小块,利用缓存友好的方式减少内存访问次数,这对处理大规模矩阵特别有效。这说明分块的主要目的是优化性能,尤其是减少缓存未命中的情况。 接下来,我需要理解分块矩阵乘法的具体步骤。用户提到的引用[2]引用[3]都涉及分块的具体实现,比如将矩阵A、B、C划分为k×k的小块。常规的矩阵乘法是三层循环,而分块可能需要更多的外层循环来处理每个块。例如,若矩阵大小为m×pp×n,分块大小为k×k,那么每个维度会被划分为ceil(m/k)、ceil(p/k)、ceil(n/k)块。这样,每个块之间的乘法需要按照子矩阵相乘的规则进,最后将结果累加到对应的块中。 然后,我需要考虑分块如何提升效率。引用[1]提到减少内存访问次数,这可能是因为将小块数据加载到缓存后,可以重复使用,避免频繁从主存读取数据。例如,在计算块C[i][j]时,需要块A[i][l]块B[l][j],如果这些块能驻留在缓存中,就能显著减少访问延迟。这也解释了为什么分块适合大规模矩阵,因为大矩阵无法一次性放入高速缓存,分块后可以局部处理。 另外,用户提供的引用[3]引用[4]展示了不同编程语言下的实现,比如C语言MPI并处理。这说明分块矩阵乘法不仅可以串实现,还可以并化,利用多线程或分布式计算进一步加速。例如,MPI中的Cannon算法就是一种分块矩阵乘法,通过分块通信模式的优化来提升性能。 用户可能想知道具体的分块步骤代码结构。例如,引用[2]中的分块大小k的选择可能影响性能,需要根据缓存大小调整。代码结构上,除了原有的三层循环(i,j,k),外层还需要三个循环来处理块的中间维度。每个块内的小矩阵相乘可以使用标准的矩阵乘法算法,然后将结果累加到对应的位置。 此外,分块矩阵乘法在数学上的正确性需要保证。即将大矩阵分块后,子矩阵相乘的等于原矩阵相乘的结果。例如,矩阵A分块为A11、A12等,矩阵B分块为B11、B12等,那么C11 = A11*B11 + A12*B21 + ...,依此类推。这种分解在数学上是成立的,因此分块后的计算是正确的。 用户可能还有疑问,比如如何选择块大小k。这通常依赖于计算机的缓存结构,比如L1缓存的大小。如果k太大,块可能无法完全放入缓存,导致频繁的缓存替换;如果k太小,分块带来的优势可能被循环的开销抵消。通常需要通过实验来确定最佳的k值。 最后,根据引用[4]中的串矩阵乘法代码,分块后的代码可能需要嵌套更多的循环层次。例如,外层的块循环,然后内层的元素循环。每个块内部的乘积累加操作需要正确映射到原矩阵的位置上,这涉及到索引的计算,如i_block * k + ii来确定元素在原矩阵中的位置。 总结来说,分块矩阵乘法的核心思想是通过将大矩阵分解为小块,提高缓存利用率,减少内存访问开销,从而优化计算效率。实现时需要正确划分块,处理块之间的乘法累加,并根据具体硬件调整块大小以达到最佳性能。</think>### 分块矩阵乘法的实现与原理 分块矩阵乘法是一种通过**矩阵分块技术优化计算效率**的方法,核心目标是通过**提升缓存利用率**减少内存访问次数,尤其适用于大规模矩阵运算[^1]。 --- #### **原理说明** 1. **分块思想** 将大矩阵$A$($m \times p$)、$B$($p \times n$)划分为若干$k \times k$的小块,分别记为$A_{i,l}$$B_{l,j}$。结果矩阵$C$的分块$C_{i,j}$通过累加子块乘积得到: $$C_{i,j} = \sum_{l} A_{i,l} \cdot B_{l,j}$$ 这种分块方式将计算限制在缓存可容纳的范围内,减少主存访问次数[^1][^2]。 2. **缓存友好性** 当处理子块时,每次仅需加载少量数据到高速缓存(如L1/L2),重复利用已加载的子块完成多次计算。例如,子块$A_{i,l}$$B_{l,j}$在缓存中参与多次乘积累加,避免频繁读取主存。 3. **数学等价性** 分块后的矩阵乘法与原矩阵乘法完全等价,仅通过分块重组计算顺序,确保结果正确性[^3]。 --- #### **实现步骤** 1. **划分矩阵** 将矩阵$A$、$B$、$C$划分为$k \times k$的子块(若维度不足则补零)。例如: - $A$划分为$\lceil m/k \rceil \times \lceil p/k \rceil$块 - $B$划分为$\lceil p/k \rceil \times \lceil n/k \rceil$块 - $C$划分为$\lceil m/k \rceil \times \lceil n/k \rceil$块 2. **分层循环计算** 在原有元素级循环($i,j,k$)外层增加块级循环($I,J,L$),逐块计算并累加结果: ```python for I in range(num_blocks_row_A): for J in range(num_blocks_col_B): for L in range(num_blocks_col_A): # 计算子块C[I][J] += A[I][L] * B[L][J] for i in range(k): for j in range(k): for l in range(k): C[I*k + i][J*k + j] += A[I*k + i][L*k + l] * B[L*k + l][J*k + j] ``` 3. **代码优化** 实际实现中需结合**循环展开、SIMD指令、并化**(如OpenMP或MPI)进一步提升性能[^4]。例如,MPI的Cannon算法通过分块矩阵的循环移位实现分布式计算。 --- #### **性能关键点** - **块大小$k$的选择**:通常取值为使子块能完全放入CPU缓存(如$k=32$或$64$),需通过实验确定最佳值。 - **内存访问模式**:按优先存储时,子块内应保证连续内存访问,避免缓存失效[^3]。 - **并化策略**:分块后各子块可独立计算,适合多线程或分布式处理[^4]。 --- #### **示例代码(C语言分块实现片段)** ```c void block_matrix_multiply(double *A, double *B, double *C, int m, int p, int n, int k) { for (int I = 0; I < m; I += k) for (int J = 0; J < n; J += k) for (int L = 0; L < p; L += k) // 计算子块C[I:I+k][J:J+k] += A[I:I+k][L:L+k] * B[L:L+k][J:J+k] for (int i = I; i < I + k; i++) for (int j = J; j < J + k; j++) for (int l = L; l < L + k; l++) C[i*n + j] += A[i*p + l] * B[l*n + j]; } ``` ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值