1 行列式
1.1 二阶与三阶行列式
1.2 全排列和对换
1.3 n 阶行列式的定义
1.4 行列式的性质
1.5 行列式按行(列)展开
1.6 习题一
- 【题解】同济线代习题一.6.1
- 【题解】同济线代习题一.6.2
- 【题解】同济线代习题一.6.3
- 【题解】同济线代习题一.6.4
- 【题解】同济线代习题一.6.5
- 【题解】同济线代习题一.7
- 【题解】同济线代习题一.8.1
- 【题解】同济线代习题一.8.2
- 【题解】同济线代习题一.8.3
- 【题解】同济线代习题一.8.4
- 【题解】同济线代习题一.8.5
- 【题解】同济线代习题一.8.6
- 【题解】同济线代习题一.8.7
- 【题解】同济线代习题一 9
2 矩阵及其运算
2.1 线性方程组和矩阵
2.2 矩阵的计算
2.3 逆矩阵
2.4 克拉默法则
2.5 矩阵分块法
2.6 习题二
3 矩阵的初等变换与线性方程组
3.1 矩阵的初等变换
3.2 矩阵的秩
3.3 线性方程组的解
3.4 习题三
4 向量组的线性相关性
4.1 向量组及其线性组合
4.2 向量组的线性相关性
4.3 向量组的秩
4.4 线性方程组的解的结构
4.5 向量空间
4.6 习题四
5 相似矩阵及二次型
5.1 向量的内积、长度及正交性
5.2 方阵的特征值与特征向量
- 【证明】矩阵特征值之和等于主对角线元素之和
- 【证明】矩阵特征值之积等于矩阵行列式的值
- 【证明】矩阵特征值的k次幂是矩阵k次幂的特征值
- 【证明】矩阵特征值的倒数是其逆矩阵的特征值
- 【证明】矩阵不同特征值对应的特征向量线性无关
- 【证明】不同特征值对应的线性无关的特征向量合并后仍然线性无关
- 特征值和特征向量